congratulations!

Ph.D. Thesis: Mechanistic Insight into Heterogeneous Oxidation Catalysts using Combined Operando and Transient Spectroscopies Supported by DFT

Leon Schumacher and Christian Hess
Leon Schumacher and Christian Hess

Ph.D. Thesis: Setup and application of modulation excitation infrared spectroscopy for mechanistic elucidation of heterogeneously catalyzed reactions.

Jakob Weyel and Christian Hess
Jakob Weyel and Christian Hess

Dr. Marc Niklas Ziemba from the field of Physical Chemistry (Prof. Dr. C. Hess) is awarded the doctoral prize for his outstanding dissertation titled 'COₓ Catalysis on CeO₂ and In₂O₃ Based Catalysts: Combining Operando Spectroscopy and DFT.'

In light of high CO2 emissions and their climate-damaging effects, Mr. Ziemba addressed in his dissertation the utilization of CO2 as a non-fossil carbon source through heterogeneously catalyzed CO2 hydrogenation. By combining innovative methodological approaches of operando spectroscopy with density functional theory calculations, he successfully gained fundamentally new mechanistic insights into the functioning of (doped) oxide catalysts based on CeO2 and In2O3. This represents a significant contribution to the knowledge-based development of improved catalysts for CO2 activation.

Dr. Marc Ziemba receives the award from the Association of Friends of TU Darmstadt for the best dissertation in the Department of Chemistry in 2022.

The Association of Friends of the Technical University of Darmstadt e.V. awarded its prize for outstanding scientific achievements for the best dissertation in each department of TU Darmstadt from the year 2022 during the Spring Festival on May 25, 2023. This year's recipient in the Department of Chemistry is Dr. Marc Ziemba, with his dissertation supervised by Prof. Dr. Christian Hess at the Eduard-Zintl-Institute, titled 'COₓ Catalysis on CeO₂ and In₂O₃ Based Catalysts: Combining Operando Spectroscopy and DFT.'

Ph.D. Thesis: In situ characterization during the synthesis and reaction of ceria-based mesoporous catalysts for NH3-selective catalytic reduction (SCR) applications.

Jun Shen and his doctoral supervisor Christian Hess
Jun Shen and his doctoral supervisor Christian Hess

Ph.D. Thesis: COx Katalyse über CeO2 und In2O3 basierten Katalysatoren: Kombination von operando Spektroskopie und DFT.
COx catalysis over CeO2 and In2O3 based catalysts: Combining operando spectroscopy and DFT.

Marc Ziemba and Christian Hess
Marc Ziemba and Christian Hess
Prof. C. Hess und der Preisträger Maximilian Pfeiffer
Prof. C. Hess und der Preisträger Maximilian Pfeiffer

Maximilian Pfeiffer receives the award from the Association of Friends of TU Darmstadt for his outstanding master's thesis

The Association of Friends of the Technical University of Darmstadt e.V. awarded the prize of 1,000 euros for the best master's thesis in the Department of Chemistry at TU Darmstadt last year on July 19, 2022. This year's recipient is Mr. Maximilian Pfeiffer, who conducted his master's thesis in the field of Physical Chemistry in the research group of Prof. Dr. Christian Hess. The award was presented during the graduation ceremony of the Department of Chemistry at TU Darmstadt.

In his master's thesis titled 'Investigation of Au-Doped SnO2 Gas Sensors Using Transient IR Spectroscopy,' Mr. Pfeiffer focused on the mechanistic elucidation of surface reactions occurring during ethanol gas sensing on gold-loaded and unloaded tin oxides.

Chemoresistive gas sensors, as investigated by Mr. Pfeiffer in his master's thesis, are widely used in safety technology for the early detection of toxic and explosive gases. Additionally, they are applied in medical diagnostics and quality control of food. Their operation is based on a change in electrical conductivity in the presence of the target molecules to be detected, which adsorb on the surface and react with the surface of the sensor material or other adsorbed surface species.

In the application areas mentioned at the beginning, ethanol is one of the most important analytes to be detected in ambient and breath air. The semiconducting metal oxide tin oxide, on the other hand, is among the first sensor materials used in gas sensors and is still one of the most commonly used sensor materials today due to its high sensitivity and easy manufacturability. Its sensor properties can be further improved by doping with small amounts of noble metals such as gold, for example, to increase sensitivity to the target analyte or to enhance selective sensor response in the presence of other potential analytes in the ambient air.

For a rational design of improved sensor materials, a profound understanding of the processes occurring at the sensor surface is crucial. This understanding can be obtained through suitable in situ spectroscopic methods that interrogate the surface species present during the reaction. In his master's thesis, Mr. Pfeiffer utilized in situ infrared spectroscopy, combining it with resistance measurements and other ex situ characterization methods. Typically, the mechanistic investigation of surface reactions is disturbed by so-called observer species that are not directly involved in the actual reaction. Therefore, the application of a transient method of infrared spectroscopy is particularly noteworthy. This method involves the periodic variation of the gas phase composition and subsequent phase-sensitive detection to selectively query the surface species actively involved in the reaction. Furthermore, this method allows the investigation of the dynamics of active surface species, i.e., the temporal sequence of adsorption/desorption or reaction steps. While this approach has found occasional application in the field of heterogeneous catalysis, it has not been applied in this form to the study of gas sensors. Thus, Mr. Pfeiffer succeeded in developing a spectroscopy-based internally consistent mechanism for the sensor response of ethanol on gold-loaded tin oxide and elucidating the influence of gold on surface reaction and sensor properties (see figure below). Additionally, he identified surface species not observed before, accessible only through time-resolved (transient) spectra, and expanded existing models for describing gas sensing on metal oxides.

The results of the master's thesis were published in the prestigious scientific journal 'Journal of Physical Chemistry C.'

Learn more: Maximilian Pfeiffer, Christian Hess, J. Phys. Chem C 2022, 126, 8, 3980-3992

Schematische Darstellung des vorgeschlagenen Mechanismus der Oberflächenreaktion von Ethanol auf gold-beladenem Zinnoxid. Abbildung: AK Hess/ TU Darmstadt
Schematische Darstellung des vorgeschlagenen Mechanismus der Oberflächenreaktion von Ethanol auf gold-beladenem Zinnoxid. Abbildung: AK Hess/ TU Darmstadt

Ph.D. Thesis:
Zinndioxid und Cerdioxid als Ethanol-Gassensoren: Synthese, Charakterisierung und operando-Spektroskopie

Ph.D. Thesis:
Orts- und zeitaufgelöste in situ Raman-Spektroskopie von LI-Ionen Batterien

Spatially and Time Resovled In Situ Raman-Spectroscopy of Li-Ionen-Batteries

private photo: Marcel Heber with mortarboard
private photo: Marcel Heber with mortarboard
private photo: Simone Rogg with motarboard
private photo: Simone Rogg with motarboard

Ph.D. Thesis:

Entwicklung und Anwendung der Operando Spektroskopie an Vanadiumoxidkatalysatoren in ODH Reaktionen: Ein Vergleich von O2 und CO2 als Oxidationsmittel

Development and Application of Operando Spectroscopy for Vanadium Oxide Catalysts in ODH Reactions: A Comparison of O2 and CO2 as Oxidising Agents

Marc Ziemba was awarded the Prize of “Freunde der TU” 4 December 2019 for his outstanding master thesis at Hess research group with the title: Investigations of the water gas shift reaction over faceted Au/CeO2 catalysts: Combination of operando spectroscopy and DFT calculations.

Member of the board Matthias Send presented the prize, which is endowed with 1,000 Euro, at the Eduard-Zintl seminar series.

On July 3, 2019, the Bottling Family Foundation awarded the prize of 3,500 euros for an outstanding doctoral thesis in the Department of Chemistry at TU Darmstadt. This year's prizewinner is Dr. Christian Schilling, who received his doctorate with distinction in the field of physical chemistry in the research group of Prof. Dr. Christian Hess.

His doctoral thesis entitled “Operando Spectroscopy and DFT Modeling of Gold/ Ceria Catalysts for CO Oxidation and Water-Gas-Shift Reaction” was characterized by demanding investigations using operando spectroscopy. He used this method to investigate oxidation reactions over ceria-containing gold catalysts in order to draw conclusions about the mode of action of this catalyst and to improve properties such as activity, selectivity and long-term stability. His work stands out in particular for its high intellectual level and an unusual degree of creativity in the autonomous conception and realization of complex research projects.

Award for excellent young researchers.

Dr. Christian M. Schilling was honored for his outstanding scientific achievements on May 16 at the Georg-Christoph-Lichtenberg Haus. The prize, which is endowed with 2,500 euros, is donated annually by the Friends of TU Darmstadt for the best dissertation in each of the TU Darmstadt faculties. Dr. Christian Schilling wrote his dissertation entitled “Operando Spectroscopy and DFT Modeling of Gold/ Ceria Catalysts for CO Oxidation and Water-Gas-Shift Reaction” in the Department of Chemistry, working group Prof. Christian Hess. Together with him, eleven other young scientists were honored for their excellent work.

The Chairman of the Friends of the TU, Matthias W. Send, presented the prize winners and their work in the ceremony. The prizes were presented in the presence of the Vice President of the TU Darmstadt, Prof. Matthias Rehahn, and the designated President of the TU Darmstadt, Prof. Tanja Brühl.

Translated with www.DeepL.com/Translator (free version)

Dissertation:
Anwendungen der atomaren Gasphasenabscheidung: Komplexe Nanostrukturen im Confinement und getragene Vanadiumoxidkatalysatoren

Dissertation:
Operando Spectroscopy and DFT Modeling of Gold/ Ceria Catalysts for CO Oxidation and Water-Gas-Shift Reaction

Dissertation:
Ceroxid-haltige Materialien als passive NOx-Adsorber: methodische Weiterentwicklungen und in situ-Untersuchungen des NOx-Einspeichermechanismus

Dissertation:
“Entwicklung und Anwendung der operando UV-Raman-Diagnostik an geträgerten Metalloxid-Katalysatoren”

Dissertation:
Entwicklung einer Anlage zur thermischen Atomlagenabscheidung von nanoskaligen Metalloxiden auf poröse Substrate

Dissertation:
Etablierung einer multi-in situ-Apparatur zur spektroskopischen Untersuchung der CO-Oxidation über Au/CeO2-Nanokatalysatoren

Dissertation:
Experimentelle und theoretische Untersuchungen zur Schwingungsstruktur an dispersen Vanadium- und Titanoxid

Dissertation:

Synthese, Charakterisierung und in situ spektroskopische Studie des Ethanol-Gassensormechanismus von Indiumoxid

Dissertation:

Methoden zur Charakterisierung und Qualitätsprüfung von SCR-Katalysatoren und SCR-beschichteten Partikelfiltern in Dieselfahrzeugen