Efficient Generation of β-L-Rhamnosidic Linkages by the 2-Ulosyl Donor Approach: Synthesis of a Trisaccharide with a Central β-L-Rhamnose Unit

Frieder W. Lichtenthaler*[a] and Thomas Metz[a]

Keywords: Carbohydrates / Glycosylation / Oligosaccharides / Reductions

Practical procedures for the production of variously blocked 6-deoxy-α-L-arabinono-2-ketohexosyl bromides from L-rhamnose have been developed. These compounds are highly useful as indirect β-L-rhamnosyl donors: they undergo β-specific glycosidations under Koenigs-Knorr conditions, and the 2-keto group of the resulting 6-deoxy-β-L-hexosiduloses is reduced with high β-L-rhamno selectivity. The straightforward application of this 2-ulosyl donor approach for the synthesis of β-L-rhamnose-containing di- and trisaccharides is demonstrated.

Introduction

The 2-ulosyl donor approach, introduced in 1985,[1] has proven to be highly expedient for the generation of β-D-mannosidic linkages, as evidenced by the straightforward synthesis of various β-D-mannose-containing oligosaccharides up to the hexasaccharide level.[1–5] Central to this procedure is the ready preparation of variously blocked α-D-arabinono-2-ketohexosyl bromides of type II from D-glucose,[1,4–7] their essentially β-specific glycosidation (→ III) – the nonparticipating electron-withdrawing 2-keto group suppresses oxycarbenium ion formation at the anomeric center thereby resulting in direct S_N2 displacement of the bromine – and manno-selective reduction of the resulting β-D-2-keto-glycosides III → IV (Scheme 1). When selectrides are used rather than borohydride only, the carbonyl reduction is also essentially manno-specific.[8] Besides its preparative simplicity, the procedure has the further advantage of providing the β-D-mannosides with free 2-OH groups (i.e., mannosyl acceptors ready for further glycosidation towards the oligosaccharides with β-D-Man-(1→2)-D-Man linkages).

Numerous bacterial antigens contain β-L-rhamnopyranose units,[9] and the 6-deoxy-β-L enantiomers of II, ulosyl bromides of types 1–5, should, if reasonably readily accessible, provide an expedient two-step procedure for their

Scheme 1. The ulosyl donor approach to β-D-mannosides

[a] Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstr. 22, 64287 Darmstadt, Germany Fax: (internat.) + 49-(0)6151/166674
straightforward synthesis. As a consequence, we opted to evaluate this concept and here we present practical synthes- es of a series of differently O-protected l-ulosyl bromides 1–5, as well as illustrations of their utility as indirect β-l-rhamnosyl donors.\[10\]

Results and Discussion

The practical preparation of the indirect β-l-rhamnosyl donors 1–5 was based on l-rhamnose as a suitable, readily available starting material, and on the 2-acyloxy-l-rham- nals of type 11 or 12 as key intermediates, these being expected to provide the desired ulosyl bromides smoothly through brief treatment with NBS/methanol.\[1,6\]

The preparation of the 3,4-O-benzoyl-protected α-l-rhamnulosyl bromide 1 (Scheme 3) started with the molybdate-promoted C-2-epimerization of l-rhamnose to provide 6-deoxy-l-glucose,\[11\] the resulting mixture of the two epimers (3:1 in favor of the gluco isomer) being readily separable upon benzoylation, as the β-l-gluco-tetrabenzoyl 6 crystallizes exceedingly well (65%). Subsequent conversion into the known \[12\] glucosyl bromide by treatment with HBr/HOAc (8), followed by DBU-induced elimination of HBr, gave the 2-benzoyloxy-l-rhamnal (11), which provided the desired ulosyl bromide 1 in crystalline form and in satisfactory overall yield (39% for the five steps from l-rhamnose) simply on treatment with NBS/methanol in dichloromethane (30 min, 25 °C).

The 3,4-di-O-benzyl-blocked ulosyl bromide 2 similarly required a seven-step sequence from l-rhamnose (although four of these steps were combinable into two one-pot operations). This approach involved conversion into the acetobromo derivative 7\[13\] and then, by treatment with methanol/ lutidine\[14\] into orthoester 9, in which the exchange of acetyl for benzyl blocking groups 9 → 10 could be performed in a one-pot operation by use of benzyl bromide/KOH in THF. The subsequent thermal fragmentation\[1,6\] (10 → 12) was satisfactorily effected by heating at reflux in bromoben- zene (≈ 160 °C) in the presence of catalytic amounts of pyridine for 5 h (81%). Final treatment of 2-acetoxy-l-rhamnal (12) with NBS/ethanol gave ulosyl bromide 2 (87%), thus providing an overall yield of 35% for the seven steps from l-rhamnose.

For the synthesis of naturally occurring β-l-rhamnose oligosaccharides both with (1→3)- and with (1→4)-inter- saccharidic linkages, ulosyl donors with differentiated blocking groups at O-3 and O-4 were required. These were provided in the form of 3-O-benzyl ulosyl bromides 3–5, bearing either an acyl or a p-methoxybenzyl moiety at O-4, by similar use of the respective orthoesters and 2-acetoxyrhamnals as the key intermediates, by starting with methyl 1-thio-α-l-rhamnioside (13) and its 2,3-O-isopropylidene derivative 15, readily accessible in three steps – acetylation,\[13\] BF₃-induced thiation with methyl sulfide, and deacetylation \[14\] (→ 13) – and in four (isopropylidenedation\[14\] of 13) steps, respectively, a preparative advantage being that the sequences are easily adaptable to 100 g scale preparations and allow overall yields in the 65% range.

For the preparation of the 4-O-acetyl- and 4-O-(p-meth- oxybenzyl)-blocked ulosyl bromides (Scheme 4), the thi- rhamnoside 13 was first converted by 2,3-O-stannylation-di-

Scheme 2

Scheme 3. Conversion of l-rhamnose into β-l-rhamnosyl donors 1 and 2

Scheme 4. Conversion of l-rhamnose into β-l-rhamnosyl donors 1 and 2
Efficient Generation of β-L-Rhamnosidic Linkages

FULL PAPER

Scheme 4. Reagents and conditions: a) Bu3SnO/toluene, reflux, then BnBr/DMF, finally Ac2O/pyr.;[16] b) Me2(OMe)2, reflux;[15] c) Br2/CH2Cl2, then MeOH/2,6-lutidine, 65°C; d) BzCl/pyr.; e) 90% TFA, room temp.; f) pMeOBnCl/KOH; g) reflux in PhBr with catal. amounts of pyridine; h) NBS/MeOH or EtOH, 15 min, 0°C.

4rected selective benzylation and acetylation[16] into the easily crystallizing 2,4-di-O-acetyl-3-O-benzyl glycoside 14 (65%), and subsequently, by S-bromination and methanalysis, into the orthoester 17, in which the 4-O-protecting acetyl group could be directly exchanged for a p-methoxybenzyl residue (17 → 18). An alternate route from S-rhamnose 13 to another orthoester differently blocked at O-3 and O-4, the 3-O-benzyl-4-O-benzoyl derivative 19, involved a straightforward six-step sequence performable in a 38% overall yield: benzylation of its 2,3-O-isopropylidene derivative 15 → 16, TFA-promoted removal of the isopropylidene group (“deacetonation” → 20), selective benzilation at O-3 via the 2,3-O-stannylidene derivative, followed by acetylation (→ 21) and methanalysis of the anomeric SMe group upon S-bromination (→ 19).

As observed for orthoester 10, the analogues 17–19 also underwent thermal fragmentation, simply on being heated at reflux in bromobenzene (b.p. 165°C) for 5 h, providing the respective 2-acetoxy-L-rhamnals 22–24 through elimination of methanol, yields being in the 85–90% range. Their conversion into the ulosyl bromides 3–5 proved to be similarly efficient — yields were nearly quantitative — being smoothly effected by treatment with N-bromosuccinimide/methanol (or ethanol) in dichloromethane at ambient temperature or 0°C, the initial bromonium ion addition at C-2 being followed by liberation of the carbonyl function through loss of the acetyl group as methyl acetate.

Model Glycosidations of Ulosyl Donors 1–5 and Uloside Reductions

The utility of ulosyl bromides 1–5 as indirect β-L-rhamnosyl donors was first examined with 2-propanol as model acceptor. Under standard Koenigs-Knorr conditions (Ag2CO3 in dichloromethane at 25°C), glycosidation was consistently complete within 15–30 min, and no α-anomeric products were detectable in the reaction mixture by TLC or 1H NMR spectroscopy. The glycosidation of the ulosyl bromides 1–5 is therefore essentially β-specific — not unexpected in view of the strongly electron-withdrawing effect of the carbonyl function, favoring direct Sβ2 displacement of the bromide through suppression of carboxonium ion formation at the anomeric center. The β-L-ulosides 25–29 were therefore isolable in yields of 80–90% (Scheme 5).

<table>
<thead>
<tr>
<th>R</th>
<th>R’</th>
<th>R”</th>
<th>R‴</th>
<th>rhamno : 6-deoxygluco</th>
<th>overall yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>30</td>
<td>Bz</td>
<td>Bz</td>
<td>3 : 1</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>31</td>
<td>Bn</td>
<td>Bn</td>
<td>> 25 : 1</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>32</td>
<td>Bn</td>
<td>Ac</td>
<td>> 25 : 1</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>33</td>
<td>Bn</td>
<td>Bz</td>
<td>> 25 : 1</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>34</td>
<td>Bn</td>
<td>pMeOBn</td>
<td>> 25 : 1</td>
</tr>
</tbody>
</table>

a: Due to partial 3-O → 2-O-benzoyl migration during workup, the product was isolated as the tribenzate.
The rhamnol6-deoxy-glucos selectivities obtained in the carbonyl reductions of the glycosiduloses confirmed previous findings\(^6^–^8\) that the outcomes depend on the nature of the 3-O-protection: uloside 25, on treatment with NaBH\(_4\) in dichloromethane/methanol (2 h, 0 °C → room temperature), gave a 3:1 mixture of the L-rhamno (30) and 6-deoxy-L-glucos epimers, whereas use of the bulkier and more reactive tri-sec-butylborohydride (β-selectride) gave a sizably improved rhamno selectivity in the 25:1 range. Both reductions, though, were impeded by partial 3-O-2-O-benzoyl migration during workup, resulting in product mixtures best resolved either by de-O-benzoylation or by benzoylation.

As the hydride reductions of the 3-O-benzylated ulosides 26–29 were already taking an essentially stereospecific course with sodium borohydride as the reductant — no 2-epimers were detectable in the reaction mixture either by \(^1\)H NMR or by TLC (Scheme 5) — recourse to more bulky hydrides for enhancement of selectivity was not necessary. When diborane was used as the reducing agent, however, the reduction became glucos-selective, as also previously observed in the α-hexosidulose series.\(^2^) Uloside 25, for example, on treatment with the borane/pyridine complex in THF at 78 °C for 30 min, underwent a high-yield conversion (80%) to the 6-deoxy-β-L-glucoside 35. The ulosyl donor approach thus not only shows promise for the generation of β-L-rhamnidosidic linkages but, through changing the reducing agent, for the acquisition of 6-deoxy-β-L-glucosides as well.

Di- and Trisaccharides with β-L-Rhamnose Units

Given the viability of ulosyl bromides 4–5 as donors for the generation at least of simple β-L-rhamnosides — both steps required in the glycosidation/reduction procedure proceed in an essentially stereospecific manner — their utility for the synthesis of oligosaccharides had to be probed next. A series of glycosyl acceptors were evaluated for glycosylation with ulosyl bromide 4, with employment of, instead of silver carbonate, the more reactive\(^6\) silver alumo-silicate catalyst [silver(i) immobilized on porous silica alumina],\(^1^7\) as glycosidic OH groups were deemed to be less reactive than that of 2-propanol.

Primary OH groups in glycoside acceptors, such as in diacetone-galactose, were most readily glycosylated with ulosyl bromide 4, providing the galactosyl β-L-rhamnose 36 in 85% yield after in situ reduction (Scheme 6). Similarly, the axially disposed 4-OH of a 1,6-anhydro-D-glucose readily underwent the two-step glycosidation/reduction procedure to provide the β-rhamnosyl-β(1→4)-D-glucose derivative 37 in crystalline form (78%). In an analogous manner, rhamnbiosides with β(1→2)-, β(1→3)-, and β(1→4)-intersaccharidic linkages could be effectively prepared by starting from ulosyl bromide 4 and the corresponding L-rhamnoside acceptors protected except for a free 2-OH
Efficient Generation of β-1-Rhamnosidic Linkages

Aside from the efficient generation of β-1-rhamnopyranosidic linkages, the ulosyl donor approach has the advantage of providing the di- or oligosaccharide with a free rhamnosyl-2-OH, thus ready for further glycosylation. Thanks to the differentiated group pattern at O-3 and O-4, though, further glycosyl residues may also be introduced at these positions. This option was demonstrated with the synthesis of the 3-O-rhamnosylated rhamnosyl-β(1→4)-rhamnose 45, a trisaccharide sequence found in the repeating units of Klebsiella and Azotobacter vinelandii polysaccharides[18] as well as various lipopolysaccharides: [19] the readily accessible rhamnobiocide 40 was converted by acetylation (→ 41) and hydrogenolysis into an acceptor 42 with a free 3-OH (91% for the two steps). Silver triflate-acetylation (→ 43) smoothly gave the protected rhamnotrisaccharide (82%), a trisaccharide sequence found in the repeating units of Klebsiella and Azotobacter vinelandii polysaccharides[18] as well as various lipopolysaccharides: [19] the readily accessible rhamnobiocide 40 was converted by acetylation (→ 41) and hydrogenolysis into an acceptor 42 with a free 3-OH (91% for the two steps). Silver triflate-promoted glycosylation with acetobromo-rhamnose (7) smoothly gave the protected rhamnotrisaccharide 43 (82%), which afforded the target 45 on standard removal of the blocking groups. Thus, by utilization of ulosyl bromide in combination with two simple rhamnose derivatives a simple synthesis of a rhamnotrisaccharide with a central β-1-rhamnose unit could be carried out.

Conclusion

The results described amply demonstrate the potential of the ulosyl donor approach for the generation of β-1-rhamnosidic linkages – an approach that compares favorably with existing methodologies[20] in its β-specific glycosylation even meeting Ziegler’s strategy of intramolecular β-1-rhamnosylation through pre-linked donor and acceptor substrates.[20]

Experimental Section

General Remarks: All solvents were of reagent grade and were further dried. All other reagents were used as received. Melting points are uncorrected and were measured with a Büchi SMP-20 machine. Optical rotations were measured with a Perkin-Elmer 241 polarimeter at 20 °C in a cell of 1-dm path length. Mass spectra were recorded with Varian MAT 311 and MAT 212 spectrometers. Microanalyses were determined on a Perkin-Elmer 240 Elemental Analyzer. Analytical thin-layer chromatography (TLC) was performed on precoated Merck plastic sheets (0.2 mm silica gel 60 F254) with detection by UV (254 nm) and/or by spraying with H2SO4 (50%) and heating. Column chromatography was carried out on Fluka silica gel 60 (70–230 mesh); eluents are given in brackets. 1H and 13C NMR spectra were recorded with Bruker WM 300, AC 300, and AVANCE 500 spectrometers. Chemical shifts are reported relative to sodium 2,2,3,3-tetradeutero-3-trimethylsilyl propionate (D2O) or Me4Si (all other solvents) as internal reference. Coupling constants are listed separately if an assignment was possible. In the listings of 1H and 13C NMR spectroscopic data for the individual compounds, signals originating from blocking groups, such as those originating from benzyl and/or benzoyl moieties, are omitted if well separated from the hexopyranoid hydrogen and carbon signals.

Preparation of the 6-Deoxy-β-1-arabinino-2-ketohexosyl Bromides

3,4-Di-O-benzyl-ulosyl Bromide (1)

1,2,3,4-Tetra-O-benzyl-6-deoxy-β-1-glucopyranosyl (β-1-Quinoce-tetraenzoate) (6): A solution of β-L-rhamnose monohydrate (50.0 g, 28 mmol) and molybdc acid (565 mg, 3.3 mmol) in water (250 mL) was stirred at 95 °C for 3 h. The reaction mixture was filtered, neutralized by addition of an anion-exchange resin (Amberlite IRA 410; OH− form), and concentrated in vacuo to a syrup, which was coevaporated twice with EtOH (50 mL). The resulting syrup (49.0 g), an approximate 2:1 mixture of 6-deoxy-1-glucose and 1-rhamnose (1 H NMR), was dissolved in pyridine (125 mL), diluted with CHCl3 (250 mL), cooled (0 °C), and benzoyl chloride (175 mL, 1.5 mol) was added dropwise. The solution was stirred for 2 h, and was then warmed to room temperature, diluted with CHCl3 (200 mL), and washed consecutively with water (200 mL), HCl (2 N, 3 × 200 mL), and water (200 mL). The organic layer was stirred with charcoal (6.5 g.), filtered through Celite, and dried (NaoH). Removal of the solvent in vacuo provided a crystalline residue, which was triturated with diethyl ether (600 mL) and filtered, to provide 6 (73.6 g) as colorless crystals. The mother liquor was taken to dryness and the residue was crystallized from MeOH (400 mL) to give additional 6 (29.6 g); overall yield: 103.1 g (65%, based on L-rhamnose). M.p. 177–179 °C; [α]D20 = +160.0 (c = 0.9, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.33 (d, 3 H, 6-H2), 4.09 (qd, 1 H, 5-H), 5.37 (dd, 1 H, 1-H, 4-H), 5.74 (dd, 1 H, 2-H), 5.89 (dd, 1 H, 3-H), 6.14 (d, 1 H, 1-H) ppm; J1,2 = 8.2, J1,4 = J5,6 = 9.6, J3,5 = 6.2 Hz. MS (FD, 10 mA): m/z = 580 [M+]. C45H35O15 (580.6): calcd. C 70.34, H 4.86; found C 70.24, H 4.90.

2,3,4-Tri-O-benzyl-6-deoxy-1-glucopyranosyl Bromide (8): A solution of 6 as obtained above (100.0 g, 0.17 mol) in CHCl3 (125 mL) was treated with a solution of HBr in AcOH (33%, 300 mL, 1.69 mol), and the mixture was stirred at room temperature for 5 h. Dilution with CHCl3 (350 mL), pouring onto crushed ice (500 mL) containing NaoSO4 (5 g), washing of the organic layer with saturated aqueous NaHCO3 solution (4 × 400 mL) and water (2 × 500 mL), followed by drying (Na2SO4) and concentration in vacuo gave a crystalline residue, which was triturated with Et2O (200 mL) and collected after standing for 6 h at 27 °C, affording 8 (69.0 g, 71%) as colorless crystals. M.p. 160 °C; [α]D20 = −117.8 (c = 1.0, CHCl3). ref[22] M.p. 158–160 °C; [α]D20 = −108 (c = 3.3, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.39 (d, 3 H, 6-H2), 4.48 (qd, 1 H, 5-H), 5.28 (dd, 1 H, 2-H), 5.45 (dd, 1 H, 4-H), 6.19 (dd, 1 H, 3-H), 6.83 (d, 1 H, 1-H) ppm; J1,2 = 4.0, J1,4 = J5,6 = 9.8, J3,5 = 6.3 Hz. 13C NMR (75 MHz, CDCl3): δ = 17.1 (C-6), 70.5 (C-3), 71.1 (C-5), 71.9 (C-2), 72.7 (C-4), 87.4 (C-1) ppm. MS (F1): m/z = 459 [M+ → Br]. C52H35BrO15 (539.3): calcd. C 60.13, H 4.28; found C 60.16, H 4.21.

(1,5-Anhydro-2,3,4-tri-O-benzyl-6-deoxy-1-arabino-hex-1-enitol (11): DBU (3.2 g, 21.2 mmol) was added to a cooled solution (0 °C) of 8 (10.0 g, 17.6 mmol) in 1,2-dichloroethane (30 mL). The mixture was stirred in the dark for 0.5 h and warmed to room temperature. The reaction mixture was then diluted with CHCl3 (250 mL), and washed with HCl (2 N, 2 × 100 mL), water (2 × 100 mL) and saturated aqueous NaHCO3 solution (100 mL). The organic layer was dried (NaoSO4) and the solvents were evaporated to give a faintly red syrup that crystallized from EtOH (40 mL), affording 11 (7.7 g, 96%) as colorless crystals. M.p. 95–96 °C; [α]D20 = +179.0 (c = 1.0, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.57 (d, 3 H, 6-H2), 4.56 (m, 1 H, 5-H), 5.56 (dd, 1 H, 4-H), 6.11 (dd, 1 H, 3-H), 6.89 (dd, 1 H, 1-H) ppm; J1,3 = 4.3, J3,4 = 5.7, J5,6 = 6.8 Hz. 13C NMR (75 MHz,
3.4-O-benzyl-6-deoxy-a-L-arabinopyranos-2-ulosyl Bromide (1): A solution of 2-benzoyloxy-1,10-dihydro-β-D-ribose (11, 5.0 g, 10.9 mmol) and MeOH (0.53 mL, 0.42 g, 13.1 mmol) in CH2Cl2 (50 mL) was stirred over freshly desiccated molecular sieves (3 Å). After 15 min the mixture was cooled to 0 °C and treated with NBS (2.33 g, 13.1 mmol), stirred at room temperature for 35 min, and then diluted with CH2Cl2 (200 mL) and successively washed with 10% aqueous Na2SO4 solution (3 × 150 mL) and water (2 × 150 mL). Drying (Na2SO4) and concentration gave a colorless syrup that slowly crystallized in vacuo (finally at 10 °C to remove the methyl benzoate formed). The crude product was dissolved in diethyl ether, triturated with n-hexane to turbidity, and kept for 16 h at -27 °C to give 1 (3.55 g, 75%) as colorless crystals.

3.4-O-benzyl-6-deoxy-a-L-arabinopyranos-2-ulosyl Bromide (2): A solution of 2-acetoxy-1,10-dihydro-β-D-ribose (11) in CH2Cl2 (5 mL) was treated with MeOH (25 mL, 1.9 mg, 0.06 mmol), stirred for 20 min over freshly desiccated molecular sieves (3 Å), and cooled to 0 °C. NBS (110 mg, 0.66 mmol) was then added and stirring was continued for 15 min, followed by immediate workup by cold CH2Cl2 (5 mL) and successive washings with cold 10% aqueous Na2SO4 solution (2 × 10 mL) and ice-water (2 × 10 mL). Drying (MgSO4) and concentration in vacuo provided 2 (177 mg, 87%) as a colorless syrup with δ20 1H NMR (300 MHz, CDCl3) = 1.01 (3 H, t, J = 12.2 Hz, 4-H), 3.51 (2 H, q, J = 7.5 Hz, 5-H), 4.31 (2 H, dd, J = 12.2, 7.5 Hz, 3-H) ppm; δ13C NMR (75 MHz, CDCl3) = 13.4 (CH2), 67.0, 75.1 (C-4), 127.7 (C-5), 124.3 (C-3), 132.7 (C-2), 182.8 (C-1), 131.7, 121.6 (C-4), 14.9 (CH3), 158.2, 166.7 (C-6), 77.9 (OCH3). The product is sufficiently pure for glycosidations. 1H NMR (300 MHz, CDCl3) = 1.35 (d, 3 H, 5-H), 3.46 (dd, 1 H, 2-H), 4.19 (qd, 1 H, 3-H), 4.62, 4.63 (each 1 H, 1’-CH2), 4.87 (d, 1 H, 1-H), 4.90 and 5.00 (each 1 H, 3’-CH2), 6.27 (s, 1 H, 1-H) ppm; δ13C NMR (75 MHz, CDCl3) = 17.3 (C-6), 72.7 (C-5), 74.2, 75.7 (2 BnCH2), 81.3 (C-3), 82.3 (C-4), 85.7 (C-1), 195.1 (C-2) ppm. MS (FD, 0–20 mA): m/z = 407, 405 [M+ + H]+, 406, 404 [M]+, 325 [M+ - Br], 315, 313 [M+ - PhCH2], 91 [PhCH2]2.

4-O-Acetyl-3-O-benzyl-ulosyl Bromide (3)
Efficient Generation of β-L-Rhamnosidic Linkages

FULL PAPER

EtOAc, 30:1), and removal of the solvents from the respective eluate gave 22 (0.86 g, 89%) as a colorless syrup. [α]D20° = −13.7 (c = 1.1, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.38 (d, 3 H, 6-H2), 2.03, 2.07 (2 s, each 3 H, AcCH2), 4.21—4.26 (m, 2 H, 3-H, 5-H), 4.62 (s, 2 H, BnCH2), 5.13 (d, 1 H, 4-H), 5.65 (s, 1 H, 1-H) ppm; J1,2 = 5.9, J3,4 = 4.4, J4,5 = 5.1, J5,6 = 6.8 Hz. 13C NMR (75 MHz, CDCl3): δ = 16.0 (C-6), 20.6, 20.9 (2 AcCH2), 71.0 (BnCH2), 71.4 (C-4), 72.2 and 72.7 (C-3, C-5), 137.9 (C-13), 138.0 (C-2), 169.5, 170.0 (2 AcCO) ppm. MS (FD, 0—10 mA): ml/z = 298 [M+] 251 [M+ − Me]+, 105 [PhCO]+. C14H14O4S (298.35): calc. C 56.36, H 6.08; found C 55.87, H 6.06.

Methyl 2-O-Acetyl-4-O-benzoyl-3-O-benzyl-1-thio-α-L-rhamnopyranoside (21): A suspension of 20 (1.70 g, 5.7 mmol) and n-dibutyltin oxide (1.63 g, 6.5 mmol) in benzene (40 mL) was stirred at reflux under a Dean—Stark trap for 5 h. Evaporation in vacuo gave a colorless syrup, which was dissolved in benzene (20 mL). Benzyl bromide (1.25 mL, 10.7 mmol) and n-tetrabutylammonium iodide (2.11 g, 5.7 mmol) were then added, and the mixture was stirred at 50°C for 6 h. The solution was then concentrated and the semicrystalline residue was stirred with EtOAc (20 mL). The solids were removed by filtration and the filtrate was concentrated to a syrup, which was dissolved in pyridine (6 mL) and cooled to 0°C. Acetic anhydride (6 mL, 63.5 mmol) was added dropwise to this solution, which was then stirred at room temperature for 2 h, treated with dry EtOH at 0°C, and stirred for 20 min (room temperature). Evaporation in vacuo and purification by elution from a silica gel column with n-hexane/EtOAc (5:1) containing 1% triethylamine gave 21 (1.68 g, 70%) as a colorless syrup. [α]D20° = −27.3 (c = 1.0, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.27 (d, 3 H, 6-H6), 2.15 (s, 3 H, SMe), 2.19 (s, 3 H, AcCH2), 3.89 (dd, 1 H, 1-H, 3-H), 4.22 (q, 1 H, 5-H), 4.40, 4.60 (2d, 2 H, 3-CH2), 5.16 (d, 1 H, 1-H), 5.33 (dd, 1 H, 4-H), 5.50 (dd, 1 H, 2-H) ppm; J1,2 = 1.4, J2,3 = 3.4, J3,4 = J4,5 = 9.8, J5,6 = 6.25, J2CH3 = 12.3 Hz. 13C NMR (75 MHz, CDCl3): δ = 13.9 (SMe), 17.6 (6-H6), 21.1 (AcCH2), 67.2 (C-5), 69.8 (C-2), 71.1 (BnCH2), 73.0 (C-4), 74.5 (C-3), 83.8 (C-1) ppm. MS (FD, 0—10 mA): ml/z = 430 [M+] 383 [M− + Me]+. C23H21NO4S (430.52): calc. C 64.17, H 6.09; found C 63.65, H 5.95.

Efficient Generation of β-L-Rhamnosidic Linkages

www.eurjoc.org

© 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

3087
EtOAc, 30:1) to yield 23 (1.50 g, 85%) as a colorless syrup on evaporation.

4-0-Benzyl-3-O-benzyl-6-deoxy-α-L-arabino-hexopyranos-2-ulopyranose 2-ulosyl Bromide (4): A solution of 2-acetoxyrhamnal (1.4 g, 3.3 mmol) in bromobenzene (30 mL) was treated with pyridine (1.44 g, 3.3 mmol) and powdered KOH (3.1 g, 55.4 mmol) were successively added to Na2S2O3 solution (10%, 2 ml) in CDCl3:

\[\text{EtOAc, 30:1} \] to yield 23 (1.5 g, 85%) as a colorless syrup on evaporation.

4-0-Benzyl-3-O-benzyl-6-deoxy-α-L-arabino-hexopyranos-2-ulosyl Bromide (4): A solution of orthoester 23 (1.36 g, 3.6 mmol) in CH2Cl2 (25 mL) was treated with dry EtOH (250 µL, 197 mg, 4.3 mmol), stirred for 15 min over freshly desiccated molecular sieves (3 Å), and cooled to 0 °C. NBS (759 mg, 4.3 mmol) was then added to the mixture and stirring was continued for 15 min. The solution was immediately worked up by dilution with cold CH2Cl2 (50 mL) and successive washings with cold aqueous NaHCO3 (2 x 20 mL). The mixture was then added to the mixture and stirring was continued for 15 min over freshly desiccated molecular sieves (3 Å) and cooled (0 °C), followed by the addition of NBS (269 mg, 1.5 mmol) and continued stirring for 15 min. Workup (as given for compound 4) provided 5 (355 mg, 98%) as a colorless syrup with [α] D = −196.4 (c = 1.0, CHCl3), sufficiently pure for the ensuing glycosidations.

4-0-Benzyl-3-O-(4-methoxybenzyl)-6-deoxy-α-L-arabino-hexopyranos-2-ulosyl Bromide (5): Dry ethanol (88 mL, 70 mg, 1.5 mmol) was added to a solution of 2-acetoxyrhamnal 24 (500 mg, 1.25 mmol) in CH2Cl2 (30 mL), and the mixture was stirred for 15 min over freshly desiccated molecular sieves (3 Å) and cooled (0 °C), followed by the addition of NBS (269 mg, 1.5 mmol) and continued stirring for 15 min. Workup (as given for compound 4) provided 5 (355 mg, 98%) as a colorless syrup with [α] D = −196.4 (c = 1.0, CHCl3), sufficiently pure for the ensuing glycosidations.

3-O-Benzyl-4-O-(4-methoxybenzyl)-6-deoxy-α-L-arabino-hexopyranos-2-ulosyl Bromide (6): Isopropyl 3,4-Di-O-benzyl-6-deoxy-β-L-arabino-hexopyranosid-2-olose (25): A suspension of 2-propanol (0.88 mL, 0.69 g, 11.5 mmol), Ag2CO3 (4.46 g, 16.2 mmol) in CH2Cl2 (80 mL), and molecular sieves (4 Å) was stirred at room temperature for 15–20 min with exclusion of moisture. A solution of ulosyl bromide 1 (5.00 g, 11.5 mmol) in CH2Cl2 (20 mL) was then added, stirring was continued for 30 min, and the mixture was filtered through Celite, followed by removal of the solvent in vacuo to afford 25 (4.55 g, 96%) as a colorless foam.

Model Glycosidations of Ulosyl Bromides with 2-Propanol

Isopropyl 3,4-Di-O-benzyl-6-deoxy-β-L-arabino-hexopyranosid-2-olose (26): A mixture of 2-propanol (0.70 mL, 0.55 g, 9.1 mmol), Ag2CO3 (2.51 g, 9.1 mmol) in CH2Cl2 (50 mL), and molecular sieves (4 Å) was stirred for 20 min at ambient temperature with exclusion of moisture. The ulosyl bromide 2 (1.49 g, 3.7 mmol), dissolved in CH2Cl2 (12 mL), was added and stirring was continued for 20 min. The mixture was filtered through Celite and removal of the solvent in vacuo provided an amorphous product, that was crystallized from diisopropyl ether to afford 26 (1.28 g, 91%) as colorless needles. M.p. 94–95 °C; [α] D = +74.2 (c = 1.0, CHCl3).

1H NMR (300 MHz, CDCl3): δ = 1.23, 1.30 [2 d, each 3 H, CH2CH2]; 1.36 (d, 3 H, 6-H3); 3.49 (dd, 1 H, 4-H3); 3.73 (dq, 1 H, 1-H); 4.04 [qq, 1 H, CH(CH3)]; 4.18 (dd, 1 H, 3-H2); 4.58, 4.64, 4.92, 4.99 (4 d, each 1 H, 2 BnCH2); 4.83 (d, 1 H, 1-H) ppm; J1,2 = 11.2, J2,4 = 11.6 Hz. 13C NMR (75 MHz, CDCl3): δ = 17.0 (C-6), 20.7 (AcCH2); 55.3 (PhOCH2); 72.2, 73.1 (BnCH2, MeOCH2CH2); 74.5 (C-5), 76.1 (C-3), 78.6 (C-4), 138.3 (C-1), 138.4 (C-2), 169.6 (Ac COO) ppm. MS (FD, 0–5 mA): m/z = 398 [M]+, 399 [M]+ + H. C22H25O8 (398.46).
Isopropyl 4-O-Acetyl-3-O-benzyl-6-deoxy-β-L-arabinopyranosid-2-ulse (27): A mixture of 2-propanol (161 µL, 126 mg, 2.1 mmol), Ag2CO3 (580 mg, 2.1 mmol) in CH2Cl2 (4 mL), and molecular sieves (4 Å) was stirred for 20 min at ambient temperature with exclusion of moisture. Ulsomial bromide 3 (357.0 mg, 1.0 mmol), dissolved in CH2Cl2 (3 mL), was then added, stirring was continued for 20 min, the mixture was filtered through Celite, and the solvent was removed in vacuo to give a syrup, which crystallized from diisopropyl ether to afford 27 (302 mg, 90%) as colorless crystals. m.p. 78–80 °C; [α]D28 = +101.1 (c = 0.9, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.23, 1.31 (2 d, each 3 H, CH(CO2)CH2), 1.30 (d, 3 H, 6-H), 2.04 (s, 3 H, CH3), 3.81 (q, 1 H, 1-H), 4.04 (q, C-CH2CH2), 4.08 (d, 1 H, CH2O), 7.25 (d, 1 H, 5-H). 13C NMR (75 MHz, CDCl3): δ = 17.82, 18.09, 20.9 (CH2CO2H), 21.7, 23.2 [CH2(CH3)], 70.8 (C-5), 72.1 [CH2CH2], 72.3 (Bn CH2), 76.4 (C-4), 81.9 (C-3), 97.9 (C-1), 197.0 (C-2) ppm. MS (FD, 0–12 mA): m/z: 384 [M+H]+.

Ulside Reductions

Isopropyl 2,3,4-Tri-O-benzoyl-β-L-rhamnopyranoside (30): A solution of K-Selective in THF (1 mL, 0.97 mL, 0.97 mmol) was added to a cold (–78 °C) solution of ulside 25 (400 mg, 0.97 mmol) in THF (3 mL). After 1 min the reaction was stopped by addition of acetic acid (0.2 mL) and CH2Cl2 (30 mL), followed by washing of the mixture with HCl (2 M, 30 mL) and satd. aqueous NaHCO3 (30 mL), drying (MgSO4), and evaporation of the solvent in vacuo. The resulting residue was diluted in CH2Cl2 (5 mL) and benzoylated over 3 h with p-toluenesulfonyl chloride (1 mL), benzoyl chloride (0.5 mL), and DMAP (50 mg). The mixture was diluted with CH2Cl2 (30 mL), washed with HCl (2 M, 30 mL) and NaHCO3 (30 mL), dried (MgSO4), and concentrated to a syrup, which was subjected to column chromatography on silica gel (hexane/EtOAc, 3:1) to yield 30 (78%) as colorless needles. m.p. 133–134 °C; [α]D28 = +218.6 (c = 0.9, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.18, 1.18 (2 d, 6 H, H-2, H-11), 1.34 (d, 3 H, 6-H), 3.84 (m, 1 H, H-5), 4.07 (m, 1 H, H-3), 4.96 (d, 1 H, H-1), 5.57 (dd, 1 H, H-3), 5.60 (t, 1 H, H-4), 5.86 (dd, 1 H, 2-H) ppm: J1 = 0.9, J2 = 3.1, J4 = 10.0, J5 = 9.1, J6 = 6.2. 13C NMR (75 MHz, CDCl3): δ = 18.1 (C-6), 21.9, 23.3 [CH2(CH3)], 70.8 (C-2), 71.1 (C-5), 71.6 [CH2CH2], 72.4 (C-4), 72.3 (C-3), 97.0 (C-1) ppm. MS (FD, 0–20 mA): m/z: 518 [M]+, 519 [M]+ + H2, 122 [PhCO2H]+, 105 [PhCO]+, 43 [C6H5]2. C39H40O8 (518.56): calecd. C 69.49, H 5.83; found C 69.45, H 5.81.

When NaBH4 in CH2Cl2 was used for reduction of 25, a 3:1 mixture of 30 and its l-gluco epimer was obtained, allowing the isolation of the major product in 60% yield only.

Isopropyl 3,4-Di-O-benzyl-β-L-rhamnopyranoside (31): L-Selective (1 mL in THF, 1 mL, 1 mmol) was added to a cooled (–78 °C) stirred solution of ulside 33 (385 mg, 1 mmol) in THF (3 mL), and after 1 min the reaction was stopped by the addition of AcOH (0.2 mL). After dilution with CH2Cl2 (15 mL), the mixture was washed with HCl (2 N, 2 × 20 mL) and satd. NaHCO3 (2 × 20 mL) and dried (MgSO4), and the solvents were evaporated in vacuo to give a syrup, which was subjected to column chromatography on silica gel (toluene/EtOAc, 4:1) to yield 31 (313 mg, 81%) as a colorless syrup on evaporation of the eluate. [α]D28 = +29.8 (c = 0.9, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.16, 1.25 (2 d, each 3 H, CH2CH2), 1.33 (d, 3 H, 6-H), 2.08 (br s, 1 H, 20-OH), 3.30 (m, 1 H, 5-H), 3.53 (m, 2 H, 3-H, 4-H), 4.03 (m, 1 H, CH2CH2), 4.05 (m, 1 H, 2-H), 4.46 (d, 1 H, 1-H), 4.63, 4.66, 4.77, 4.93 (4 d, each 1 H, 2 H, 2 NC(CH3)2), 7.25–7.40 (m, 10 H, 2 CH3); J1 = 0.8, J4 = 6.2, JCH2CH2 = 6.2 Hz. 13C NMR (125 MHz, CDCl3): δ = 17.9 (C-6), 21.6, 23.4 [CH2CH2], 69.0 (C-2), 70.8 [CH2CH2], 71.3 [CH3(CH2)], 71.4 (C-5), 75.3 (Bn CH2), 79.6, 81.6 (C-3 and C-4), 97.4 (C-1), 127.7–138.4 (2 CH2) ppm. MS (FD, 0–12 mA): m/z: 387 [M]+ + H, 386 [M]+. C35H37O8 (386.49): calecd. C 71.48, H 7.82; found C 70.51, H 7.78.

With NaBH4 as reducing agent, 31 was isolated in 76% yield.

Isopropyl 4-O-Acetyl-3-O-benzyl-β-L-rhamnopyranoside (32): Subjection of 27 (to reduction with NaBH4 (100 mg) in CH2Cl2/MEOH (1:1, 20 mL) at 0 °C, and stirring for 1 h, followed by dilution with CH2Cl2 (120 mL) and workup (as described for compound 32) provided a crude syrup, that was purified by elution from a silica gel column (n-hexane/EtOAc, 3:1) to give 32 (238 mg, 70%) as a color-
Isopropyl 4-O-Benzoyl-3-O-benzyl-β-L-rhamnopyranoside (33): NaNBH₄ (0.75 g, 19.8 mmol) was added to a stirred, cooled (0 °C) solution of uloside 28 (1.00 g, 2.5 mmol) in CH₂Cl₂/MeOH (1:1, 60 mL), and stirring was continued for 2 h. Dilution with CH₂Cl₂ (70 mL), successive washings with water (70 mL), aqueous citric acid solution (1%), and water (70 mL), and drying (MgSO₄), followed by concentration in vacuo, gave a syrup product that was purified by elution from a silica gel column (toluene/EtOAc, 6:1) to afford 33 (72.7 g, 71%) as a colorless syrup. [α]²⁰ᵣₑ₅ = +87.7 (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 1.15, 1.25 [2 (d, 3 H, CH₃CH₂)], 1.32 (d, 3 H, 6-H₃), 2.48 [br. s, 1 H, 2-OH], 3.28 [qd, 1 H, 5,6-J], 3.51–3.53 (m, 2 H, 3-H, 4-H), 3.83 (s, 3 H, CH₃OCH₂), 3.98–4.07 [m, 2 H, 2-H, CH₂(CH₃)], 4.45 (d, 1 H, 1-H), 4.80, 4.87, 4.78, 4.86 (br. d, 4 H, 2 CH₂OH) ppm; J₁,₂ = 0.7, J₃,₄ = 9.5, J₅,₆ = 6.2, J₆,₇ = 12.5, J₇,₈ = 154.6 Hz. ¹³C NMR (75 MHz, CDCl₃): δ = 71.6 (C-3), 71.6 (C-4), 68.8 (C-2), 70.4 (C-5), 70.9 (BnCH), 71.0 (CH₂OCH₂), 73.0 (C-4), 78.1 (C-3), 97.6 (C-1) ppm. MS (FD): m/z = 401 [M⁺], 400 [M⁺ + 1]. C₂₃H₂₅O₆ (404.47): calcld. C 68.89, H 6.05; found C 68.86, H 6.99.

General Glycosidation Procedure for Ulosyl Bromides with Glycoside Acceptors: A suspension of acceptor (0.225 mmol), silver allosaminicate catalyst (170 mg, 0.5 mmol), and molecular sieves (4 Å) in dry CH₂Cl₂ (1.5 mL) was stirred for 20–30 min at room temperature with exclusion of moisture. The ulosyl bromide (0.45 mmol), dissolved in dry CH₂Cl₂ (1.0 mL), was added dropwise over 30–45 min and stirring was continued until no donor could be observed in the reaction mixture by TLC. The mixture was filtered through Celite and the solvent was removed in vacuo to obtain the 2-ulos. Subsequent treatment with NaNBH₄ (47 mg, 1.25 mmol) in CH₂Cl₂/MeOH (1:1, 20 mL) at 0 °C, followed by stirring for 60 min, and evaporation in vacuo, provided a crude product that was dissolved in CH₂Cl₂ (60 mL), washed successively with aqueous citric acid solution (1%, 25 mL), and water (2 × 25 mL), and dried (MgSO₄). Concentration of the solution and chromatographic purification by elution from a silica gel column yielded the β-linked disaccharide.

Silver Allosaminic Acid Catalyst: A slurry of silica-alumina SHPV catalyst (a porous aluminosilicate with a BET surface 473 m²/g, AKZO Chemie, Amsterdam, 20 g) in NaNH (n, 250 mL) was stirred at 100 °C for 1 h. The material was then filtered, washed with water (5 × 50 mL), and stirred with an aqueous solution of AgNO₃ (0.2 M, 400 mL) in the dark for 16 h at ambient temperature. Filtration and washing of the residue with water (2 × 30 mL) and acetone (200 mL), followed by drying in vacuo for about 3 d at 90 °C, gave the active material.

6-O-(4-Benzyloxy-3-O-benzyl-β-L-rhamnopyranosyl)-1,2,3,4-di-O-isopropylidene-D-galactopyranosyl (30): Glycosidation of 1,2,4,5-di-O-isopropylidene-D-galactose²³ with ulosyl bromide 4 (30 min) and subsequent NaNBH₄ reduction according to the General Procedure, followed by chromatography (n-hexane/EtOAc, 1:2) gave 30 (115 mg, 85%) as a colorless syrup; [α]²⁰ᵣₑ₅ = +8.2 (c = 0.8, CHCl₃). ¹H NMR (300 MHz, CDCl₃): β-L-rhamnosyl-6-H: δ = 1.28 [d, 3 H, 6-H₃], 2.70 [br. s, 1 H, 2-OH], 3.54 [qd, 1 H, 5,6-J], 3.60 (dd, 1 H, 5'-H), 4.23 (d, 1 H, 4'-H), 4.53, 4.69 (2, each 1 H, BnCH₂), 4.54 (d, 1 H, 1'-H), 5.38 (dd, 1 H, 4'-H) ppm; J₁,₂ = 0.5, J₂,₃ = 2.9, J₂,₃ = 9.5, J₃,₄ = 6.2. ¹³C NMR (75 MHz, CDCl₃): δ = 137.3, 133.3, 147.6, 154.2 (4s, 12 H, 4 CH₂), 38.11 (dd, 1 H, 6'-H), 3.91 (dd, 1 H, 6'-H), 3.49 (dd, 1 H, 5'-H), 3.42 (dd, 1 H, 1'-H), 4.38 (dd, 1 H, 4'-H), 4.66 (dd, 1 H, 1'-H), 5.30 (d, 1 H, 1'-H) ppm; J₁,₂ = 5.0, J₂,₃ = 2.4, J₃,₄ = 8.0, J₄,₅ = 1.8, J₅,₆ = 8.7, J₆,₇ = 5.7, J₇,₈ = 9.4, J₈,₉ = 179.6 Hz. ¹¹C NMR (75 MHz, CDCl₃): β-L-rhamnosyl-6-C: δ = 17.5 (C-6'), 67.8 (C-2'), 70.6 (C-5'), 70.9 (BnCH₂), 72.7 (C-4'), 77.7 (C-3'). 100% (C-1'), α-galactosyl-C: δ = 24.5, 24.9, 26.0, 26.1 (4 CH₂), 65.7 (C-5), 67.6 (C-4), 70.5 (C-3), 70.6 (C-2, C-4), 96.2 (C-1), 108.7, 109.2 (2 CH₂OCH₂) ppm. MS (FD, 0–20 mA): m/z = 600 [M⁺]. C₂₃H₂₅O₁₁ (600.66): calcld. C 63.99, H 6.71; found C 63.83, H 6.73.
1,6-Anhydro-2,3-di-O-benzyl-1-O-(4-O-benzoyl-3-O-benzyl-β-D-\(\text{rhamnopyranosyl})-β-D\)-glucopyranose (37): Treatment of 1,6-anhydro-2,3-di-O-benzyl-β-D-glucopyranose[24] with ulosyl bromide 4 according to the General Procedure (vide supra, glycosylation time: 2.5 h), followed by purification on a silica gel column (toluene/EtOAc, 2:1) and crystallization from 2-propanol gave 120 mg (78%) of 37 as fine, colorless needles. M.p. 177 °C; [α]_D += +33.5 (c = 1.0, CHCl₃). \(\text{^1}H\text{ NMR (300 MHz, CDCl}_3\):} δ = 1.25 (d, 3 H, 6'-H₀), 2.60 (br. s, 1 H, 2'-OH), 3.32–3.42 (m, 1 H, 1'-H), 3.39 (d, 1 H, 2'-H), 3.47 (dd, 1 H, 3'-H), 3.61 (dd, 1 H, 3'-H), 3.68 (dd, 1 H, 1'-H), 3.74 (dd, 1 H, 4'-H), 3.90 (d, 1 H, 6'-H), 4.05 (d, 1 H, 5'-H), 4.43 (d, 1 H, 1'-H), 4.48–4.72 (m, 7 H, 5'-H, 3' CH₂CH₂), 5.35 (dd, 1 H, 4'-H), 5.46 (s, 1 H, 1'-H) ppm. MS (FD): \(m/z = 682\) [M⁺]. Cₐ₄H₅₂O₁₀ (682.77): calcd. C 70.37, H 6.20; found C 69.97, H 6.18.

Methyl 3,4-Di-O-benzyl-1-O-(4-O-benzyl-3-O-benzyl-β-D-\(\text{rhamnopyranosyl})-α-L-rhamnopyranoside (38): Ulosyl bromide 4, dissolved in CH₂Cl₂, was injected into a suspension of methyl 3,4-di-O-benzyl-α-L-rhamnopyranoside[25] and silver amnosilicate catalyst as described in the General Procedure (vide supra, glycosylation time: 80 min), followed by elution from a silica gel column (toluene/EtOAc, 2:1) to give 38 (125 mg, 79%) as a colorless syrup. [α]_D += +50.1 (c = 0.8, CHCl₃). \(\text{^1}H\text{ NMR (300 MHz, CDCl}_3\):} δ = 1.29 (d, 3 H, 6'-H₀), 1.32 (d, 3 H, 6'-H₀), 2.60 (br. s, 1 H, 2'-OH), 3.34 (s, 3 H, 1-OC₃), 3.46–3.59 (m, 2 H, 2-H, 4-H), 3.58 (dd, 1 H, 3'-H), 3.68 (qd, 1 H, 5'-H), 3.87 (dd, 1 H, 3'-H), 4.26 (d, 1 H, 2'-H), 4.39 (dd, 1 H, 2'-H), 4.53, 4.54, 4.58, 4.72, 4.83, 4.89 (dd, 1 H, each 1 H, 3'CH₂CH₂), 4.66 (s, 1 H, 1'-H), 4.70 (s, 1 H, 1'-H), 5.46 (dd, 1 H, 1'-H) ppm. J₁₁₄ = 2.0, J₃₄₅ = 3.3, J₃₄₉ₕ₉ = 9.4, J₅₂₀₅₂ = 6.2, J₂₃₅ = 10.9, 11.4, 12.7, J₁₁₆₆ = 166.6, J₁₅₈₁ = 158.1 Hz. \(\text{^1}C\text{ NMR (75 MHz, CDCl}_3\):} δ = 17.7 (C-6'), 18.1 (C-6), 54.8 (1-OC₃), 67.7 (C-5), 68.2 (C-2'), 70.4 (BnCH₂), 70.9 (C-5'), 71.1 (BnCH₃), 71.6 (C-2'), 72.8 (C-4'), 75.2 (BnCH₂), 77.5 (C-3'), 78.2 (C-3), 79.8 (C-4), 97.4 (C-1') ppm. MS (FD): \(m/z = 698\) [M⁺]. Cₐ₄H₅₂O₁₀ (698.81): calcd. C 70.47, H 6.64; found C 69.78, H 6.75.

Methyl 2,4-Di-O-benzyl-1-O-(4-O-benzoyl-3-O-benzyl-β-D-\(\text{rhamnopyranosyl})-α-L-rhamnopyranoside (39): Treatment of methyl 2,4-di-O-benzyl-α-L-rhamnopyranoside[25] with ulosyl bromide 4 according to the General Procedure (vide supra, glycosylation time: 100 min), followed by chromatography on silica gel (n-hexane/EtOAc, 2:1) gave 39 (120 mg, 77%) as a colorless syrup. [α]_D += +19.5 (c = 0.9, CHCl₃). \(\text{^1}H\text{ NMR (300 MHz, CDCl}_3\):} δ = 1.21 (d, 3 H, 6'-H₀), 1.36 (d, 3 H, 6'-H₀), 2.45 (br. s, 1 H, 2'-OH), 3.33 (s, 3 H, 1-OC₃), 3.26–3.40 (m, 1 H, 1'-H), 3.45 (dd, 1 H, 3'-H), 3.55–3.73 (m, 3 H, 4-H, 5'-H), 2.98 (dd, 1 H, 2'-H), 4.23 (dd, 1 H, 3'-H), 4.33 (s, 1 H, 1'-H), 4.50, 4.59, 4.61, 4.67, 4.77, 5.01 (6 d, each 1 H, 3'CH₂CH₂), 4.73 (d, 1 H, 1'-H), 5.35 (dd, 1 H, 1'-H) ppm. J₂₃₅ = 1.7, J₃₄₅ = 3.2, J₃₄₉ₕ₉ = 8.7, J₅₂₀₅₂ = 6.0, J₃₄₅₂ = 3.0, J₃₄₅ = 9.6, J₅₂₀₅₂ = 6.1, J₂₃₅ = 10.6, 12.5, J₁₁₆₆ = 167.1, J₁₁₅₈ = 156.3 Hz. \(\text{^1}C\text{ NMR (75 MHz, CDCl}_3\):} δ = 17.6 (C-6'), 18.1 (C-6), 54.7 (1-OC₃), 67.7 (C-5), 68.4 (C-2'), 70.6 (C-5'), 70.8, 72.5 (2BnCH₂), 72.9 (C-4'), 74.6 (C-2'), 74.9 (BnCH₃), 76.9 (C-3'), 77.9 (C-3'), 79.6 (C-4'), 97.3 (C-1'), 98.1 (C-1') ppm. MS (FD): \(m/z = 698\) [M⁺]. C₉₂H₇₀O₃₀ (698.81): calcd. C 70.47, H 6.64; found C 70.46, H 6.70.
Methyl 2,3,4-tri-O-isopropylidene-4-O-[2-O-acetyl-4-O-benzoyl-3-O-\textit{L}-rhamnopyranosyl]-\textit{O}-\textit{L}-rhamnopyranoside (43): A solution of rhamnobiocide 140 mg, 0.3 mmol), acetobromo-rhamnose 7(110 mg, 0.5 mmol), and 2,6-di-tert-butyl-4-methylpyridine (72 mg, 0.35 mmol) in dry CH₂Cl₂ (3 mL) was stirred at room temperature for 10 min over molecular sieves (4 Å) with exclusion of moisture. The solution was cooled to -45 °C, treated with AgOTf (75 mg, 0.3 mmol), and stirred for 100 min, during which the mixture was warmed to -5 °C. The mixture was filtered through Celite, diluted with CH₂Cl₂ (60 mL), and washed with saturated aqueous NaHCO₃ solution (2 × 25 mL) and water (2 × 25 mL). Drying (MgSO₄) and concentration in vacuo provided a residue, which was purified by elution from a silica gel column with CHCl₃/MeOH-hexane (15:1) to afford 43 (190 mg, 82%) as a colorless syrup. [α]D +7.8 (c = 1.0, CHCl₃).

\[\text{δ} (\text{H}) = 1.30 (d, 3 H, 6\text{-H}), 3.40 (s, 3 H, 1\text{-OC} \text{H}_3), 6.39 (C-5), 70.6 (C-4), 82.5 (C-3), 98.1 (C-1), 98.0 (C-1\text{-C}), 109.1 (C\text{-CH}_3) \text{ppm. MS (FD): m/z = 495 [M}^+ + H]], 147 [Rha^+]-OH.\]

Acknowledgments
Support of these investigations by the Fonds der Chemischen Industrie, Frankfurt and Südzucker AG, Mannheim/Ochsenfurt is gratefully acknowledged.

Efficient Generation of β-1-Rhamnosidic Linkages

Received March 6, 2003