Neue chirale, tetrakoordinierte Schwefelverbindungen als enantiomerenreine Metall-Liganden und Syntheseäquivalente asymmetrischer d³-Synthone

Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel

> vorgelegt von Michael Reggelin aus Elbingerode/Harz

> > Kiel 1989

Referent: Prof. Dr. D. Hoppe

Korreferent: Prof. Dr. W. Tochtermann Tag der mündlichen Prüfung: 3.5.89

Zum Druck genehmigt: Kiel, den

Meinen Eltern

Die vorliegende Arbeit wurde in der Zeit von Februar 1986 bis Oktober 1988 im Institut für Organische Chemie der Universität Kiel unter der Leitung von Herrn Prof. Dr. D. Hoppe angefertigt.

Meinem verehrten Lehrer Herrn Prof. Dr. D. Hoppe danke ich für die interessante Aufgabenstellung, sein reges Interesse am Fortgang der Arbeit sowie für außer-gewöhnlich zahlreiche Diskussionen und Anregungen.

Allen Mitarbeitern der Abteilung danke ich für die angenehme Laboratmosphäre und für den lebhaften, oft fruchtbaren Gedankenaustausch.

Dem Leiter der spekroskopischen Abteilung, Herrn Dr. Chr. Wolff, danke ich herzlich für die kollegiale Zusammenarbeit, seine Sorgfalt bei der Aufnahme und sein Engagement bei der Interpretation vieler NMR-Spektren.

Inhaltsverzeichnis

Theor	retisch	er Teil	Seite
A		Einleitung und Problemstellung	1
B		Zur Struktur von α-Sulfonylcarbanionen	7
1.		Experimentelle Befunde	7
2.		Spektroskopische Befunde und Kristallstrukturanalysen	7
3.		Theoretische Studien	10
С		Versuche zur Synthese des 1-Sulfinyl-2-butenylcarbamats 30	12
D		Synthese der 1-Sulfonyl-2-alkenylcarbamate 45 und 46	15
Е		Umsetzungen der metallierten Sulfone 46 und 45	
		mit Carbonylelektrophilen	18
	1.	Sulfon 45	18
	2.	Sulfon 46	19
	3.	Zur Frage der konfigurativen Stabilität der metallierten	
		Intermediate 57 und 65	24
	4.	Bildungsmechanismus und Stereochemie der Enone	25
4.1		Zum Mechanismus	29
4.2		Vergleich mit bereits bekannten Methoden der nukleophilen Acylierung	32
F		Synthese der chiralen Liganden	36
1.		Synthese des Bissulfoximides 141	38
2.		Synthese von 144	42
3.		Zur Synthese der Bissulfoximide 135 und 134	44
3.1		Umsetzungen der Bissulfoxide 144 und 141 mit MSH	45
3.2		Iminierung und nachfolgende Deblockierung	51
3.3		Kupplung zweier Schwefel(VI)-fragmente	54
4.		Synthese von 200	59
4.1		Oxidative Kupplung von 201	59

Teile der vorliegenden Arbeit wurden durch die Stiftung Volkswagenwerk gefördert.

		Seite
4.2	Zur Kupplung alternativer Sulfoximide	65
4.3	Deblockierung von 203	66
4.3.1	Mit Trifluoressigsäure	67
4.3.2	Mit Aluminiumchlorid/Anisol	68
5.	Synthese des tridentalen Liganden 238	71
5.1	Verwendung von Ethylformiat als C1-Baustein	71
5.2	Verwendung von Dimethylcarbonat als C1-Baustein	74
5.3	Synthese von 238 über den Aldehyd 236	76
5.3.1	Zur Deblockierung von 238	78
6	Darstellung der β -Hydroxysulfoximide 246 und 247	81
G	Zur Synthese und Anwendung chiraler Titanreagenzien in der	
	Homoaldolreaktion über metallierte 1-Sulfonyl-2-alkenylcarbamate	85
1	Chiral modifiziarte Titanreagenzian zur egymmetrischen Sunthese	
1.	ontisch aktiver. Alkohole	95
2	Sunthese der Titanierungsreagenzien	83
2.1	Achirale Modellsysteme	07
2.1	Synthese der chiralen Metallkomplexe	07
2.2	Imsetzung von 247 mit Titantetrachlorid	80
2.2.1	Reaktionen des hidentalen Liganden 203 hzw. 200 mit Titantetrachlorid	89
2.2.2	Imsetzung mit 238	01
2.2.5	Synthese von 269 ¹⁰⁹	91
2.2.4	Imsetzung von 273 mit Dichlordiisopropovytitan	91
3	Priifung der synthetisierten Chlortitanreagenzien auf ihre Fignung	95
5.	in der metallorganischen Synthese	95
н	Versuche zur Abwandlung der 4-Hydroxy-1-sulfonyl-1-alkenylcarbamate	99
1.	Zur intramolekularen Michael Addition	103
I	Zur Anwendbarkeit S-chiraler, nichtracemischer, Schwefel(VI)-bausteine	
	als Syntheseäquivalente asymmetrischer d ³ -Synthone	111
1. 88	Synthese und Eigenschaften des N-Allylsulfoximides 327	114
2.	Zur Darstellung des Sulfonimidoates 343	116
3.	Synthese und Eigenschaften des Sulfonimidamides 348	110
4.	Versuche zur Synthese des <i>tert</i> -Butylsulfonimidamides 352	123
	*	125

5.

		Seite
5.	Synthese und Hydroxyalkylierung von S-Allylsulfoximiden	126
к	Zusammenfassung und Ausblick	138
Experi	menteller Teil	
L	Allgemeines	147
M	Darstellung der Ausgangsverbindungen	149
1.	Darstellung der Titanreagenzien	149
1.1	Tetraisopropoxytitan (TIPT)	149
1.2	Chlortri(isopropoxy)titan (ClTiO)	149
1.3	Chlortris(diethylamino)titan (CITiN)	149
2.	(S)-2-Benzyloxypropanal [(S)-62]	149
3.	(S)-2-(tert-Butyldimethylsilyloxy)propanal [(S)-9]	149
4.	p-Toluolsulfonsäurefluorid (48)	150
5.	tert-Butylhypochlorit	150
6.	O-(2,4,6-Trimethylphenylsulfonyl)acethydroxamsäureethylester	151
7.	O-(2,4,6-Trimethylphenylsulfonyl)hydroxylamin (MSH)	151
8.	p-Toluolthiosulfonsäure-S-phenylester (50)	151
9.	$(S_S, 1R, 3R, 4S)$ und $(R_S, 1S, 3S, 4R)$ -p-Toluolsulfinsäurementhylester	
	(38 und ent-38) URS shall also also also also also also also a	152
10.	(E)-N,N-Diisopropylcarbamidsäure-2-butenylester (39)	153
11.	4-Chlorbutansäurechlorid	153
12.	$(RS_{S,1}S)$ -p-Toluolsulfinsäure-(1-methylbenzyl)amid (335a)	153
N	Synthese der Sulfone 45 und 46, sowie des 3-Phenylsulfenylesters 51	154
1.	(E)-N,N-Diisopropylcarbamidsäure-[1-(methylsulfonyl)2-butenyl]-	2
	ester (45)	154
2.	Allgemeine Arbeitsvorschrift zur Darstellung der N,N-Ditsopropyl-	()
2.1	carbamidsäure[1- $(p$ -toluolsulfonyl)-2-alkenyl]ester	155
2.1	Sulton 46 Sulton Sultan S	156
5.	Darstellung von 51	157
0	Unsetwaren der Selfere 45 und 44	1.1
U	Onsetzungen der Sullone 45 und 46	158

		Seit
1.	Umsetzung von 45 mit 2,2-Dimethylpropanal: 56B ³²⁾	158
2.	Umsetzungen des Sulfons 46	159
2.1	Allg. Arbeitsvorschrift zur Synthese der Enone 66	159
2.1.1	Enon 61	160
2.1.2	Enon 59	160
2.1.3	Enon 63	161
2.1.4	Enon 64	163
3.	Allg. Arbeitsvorschrift zur Darstellung der 4-Hydroxy-1-(p-toluol-	
	sulfonyl)-1-alkenylcarbamate 18	164
3.1	Umsetzung von 46 mit 2-Methylpropanal: 68	164
3.2	Umsetzung von 46 mit S-und rac-9: 69 und 70	166
3.3	Umsetzung von 46 mit S-und rac-62: 71 und 72	167
4.	"Eintopfvariante" zu 68	169
5.	Synthese der O-geschützten 4-Hydroxy-1-(p-toluolsulfonyl)-1-	
	alkenylcarbamate	170
5.1	Synthese von 311	170
5.2	Synthese von 315	172
5.3	Synthese von 300	173
5.4	Synthese von 308	174
5.5	Synthese von 288 manuferne onter deren von die Gereichen der Stelle	176
	G-(2,4,6-Trimethylphenylsulforyl)loydroxylamia (MSH)	
Р	Versuche zur Abwandlung (06) anselgenog-demuteneitusoutriouter -	178
1.	Umsetzung von 68 mit Lithiumaluminiumhydrid: 280	178
2.	Umsetzung von 68 mit Lithiumaluminiumhydrid: 284A/B ³²⁾	179
3.	Zur intramolekularen Michael-Addition	181
3.1	Umsetzung von 288 mit LDA	181
3.2	Umsetzung von 308 mit Kaliummethanolat/Methanol	181
3.3	Umsetzung von 300 mit Kaliumdiisopropylamid : 303	182
4.	Umsetzung von 311 mit Vinylcuprat	183
5.	Umsetzung von 315 mit Tributylstannan/AIBN	183
Q	Synthese der chiralen Liganden and China China and Sharan Andreas	185
1.	Allgemeine Arbeitsvorschrift : chirale Sulfoxide	185
1.1	Sulfoxid 142	185
1.2	Sulfavid 143	186

		Seite
1.3	Sulfoxid 271	187
2.	Allgemeine Arbeitsvorschrift : chirale Sulfoximide	187
2.1	Sulfoximid 168	188
2.2	Sulfoximid 210	189
2.3	Sulfoximid 272	190
2.4	Sulfoximid 166	191
2.5	Umsetzungen des Bissulfoxides 144 mit MSH	192
2.5.1	Bei Raumtemp.: 163	192
2.5.2	Bei 60 °C: 164	193
2.6	Umsetzung von 170 mit MSH	194
3.	Synthese der N-geschützten Sulfoximide	194
3.1	Darstellung von 192	194
3.2	Darstellung von 169	195
3.3	Darstellung von 167	196
3.4	Darstellung von 180	197
3.5	Darstellung von 183	198
3.6	Darstellung von 181	200
3.7	Allgemeine Arbeitsvorschrift: N-tert-Butyloxycarbonylsulfoximide	201
3.7.1	Synthese von 201	202
3.7.2	Synthese von 211	203
4.	Allgemeine Arbeitsvorschrift	204
4.1	Bissulfoxid 141	204
4.2.1	Bissulfoxid meso-144	205
4.2.2	Bissulfoxid 144	206
4.3	Sulfinylsulfoximid 170	208
4.4	Bissulfoximide 197 und meso-197	209
5.	Synthese des Bissulfoximides 200	210
5.1	Oxidative Kupplung von 201	210
5.1.1	mit Kupfer-(I)-chlorid/Sauerstoff	210
5.1.2	mit Kupfer-(II)-chlorid	213
5.2	Abspaltung der Schutzgruppe	215
5.2.1	mit Trifluoressigsäure	215
5.2.1.1	Deblockierung von 201: 168	215
5.2.1.2	Deblockierung von 203: 200	215
5.2.2	mit Aluminiumchlorid/Anisol	218
5.2.2.1	Deblockierung von 211: 210	218
5.2.2.2	Deblockierung von 203: 200	219
5.2.3	mit Titantetrachlorid: 210	220

		Seite
6.	Synthese des tridentalen Liganden 238	221
6.1	Umsetzung von 201 mit Ethylformiat: 225	221
6.2	Synthese der α -Sulfonimidoylacetate	222
6.2.1	Synthese von 226	222
6.2.2	Synthese von 227	223
6.3	Reduktion des Esters 227: 236	224
6.3	"Eintopfyariante" zu 236	226
6.4	Kupplung des Aldehyds 442 mit 211: 238	227
7	Darstellung der β-Hydroxysulfoximide	228
7.1	Synthese yon 213	228
7.2	Synthese von 246 und 249	229
73	Synthese you 247	232
1.5	Rai nov gnalistanci	202
D	Synthese und Test der Titanreagenzien	234
K	ORI nov gnullation	254
1.	Umsetzungen der chiralen Liganden mit Titantetrachlorid	234
1.1	mit 247	234
1.2	mit 203	234
1.3	mit 200	236
2.	Umsetzung von 273 mit Dichlordiisopropoxytitan	236
3.	Test der Titanreagenzien	237
s	Synthese der optisch aktiven Schwefelbausteine	238
1	Q-Trimethylsilylyalinol (334c und 334c•HCl)	238
2	Darstellung von 335c	239
2.1	Desilvlierung von $335c: 345A/B^{32}$	241
3	Darstellung der <i>tert</i> -Butylsulfinamide	243
3.1	tert-Butylsulfinsäurechlorid 353	243
3.2	Synthese yon 354	243
4	(1R 2S 5R)-Menthylsulfinate 335bAB ³²)	246
4.1	(1R 2S 5R)-Menthylcarbamat 334b	246
12	Synthese yon 335bAB ³²⁾	247
5	Allgemeine Arbeitsvorschrift: Sulfonimidovlchloride	247
6	Allgemeine Arbeitsvorschrift: Sulfonimidoylfluoride	248
6.1	Elucid 105	240
6.2	Fluoride 2270 A R ³²) (APS - Children et al and a	240
0.2	Fillonde 5578AD	249
0.3	Fluonde 55/0AD [/]	230

7. 8.

9. 9.1 9.2 10. 10.1

10.2 11.

Т

1. 2. 3.

	Seite
Synthese von 327	251
Umsetzung von 336cAB mit 2-Butenol: 340	252
Synthese der Sulfonimidamide	253
Darstellung von 346	253
Desilylierung und Methylierung von 346: 348 und 349	255
Darstellung der S-Allylsulfoximide 338	258
Synthese von 338aA/B ³²⁾	258
Synthese von 338bAB ³²⁾	260
Umsetzung von 336cAB mit Kaliumfluorid: 372 und 375	262
Umsetzungen von 327, 338aA/B und 348 mit Aldehyden	264
Umsetzung von 327 mit 2-Methylpropanal: 329AB ³²⁾	264
Umsetzung von 348 mit Pivaldehyd: 350	265
Umsetzung von 338aA und 338aB mit Pivaldehyd: 370, 368 und 369	266
Literaturverzeichnis	270
	2.0

THEORETISCHER TEIL

-1-

A Einleitung und Problemstellung

Die mit der Synthese von Naturstoffen polyketiden Ursprungs verknüpften Probleme der Stereokontrolle in acyclischen Systemen¹⁾ und die davon ausgehenden Impulse auf die Entwicklung der Carbanionenchemie hat zu einer Reihe von neuen leistungsfähigen Synthesekonzepten geführt. Ein Großteil dieser Strategien gründet sich auf die Tatsache, daß die als Gegenionen fungierenden Metallkationen durch ihre Fähigkeit zur Ausbildung von Chelatringen das carbanionische Reagenz konformativ so fixieren, daß ein einheitlicher, vorhersagbarer Reaktionsverlauf möglich ist. Durch die Anwendung von Metallen, wie z.B. Bor oder Titan, die unter Ausbildung besonders kompakter Übergangszustände²⁾ die für die Stereoselektivität maßgeblichen sterischen Wechselwirkungen maximieren, können insbesondere die mit der Aldolreaktion verknüpften stereochemischen Probleme heute weitgehend als gelöst betrachtet werden³). Auch in der von *Hoppe* et al.⁴⁾ entwickelten Homoaldolreaktion mit α -metallierten 2-Alkenylcarbamaten erzielt man ein hohes Maß an Stereokontrolle durch den Aufbau cyclischer metallorganischer Derivate, die die relative Topizität der Reaktanden festlegen.

Im ersten Schritt der Reaktionssequenz wird ein 2-Alkenylcarbamat, z.B. **1**, mit *n*-BuLi/ TMEDA bei -78°C deprotoniert und anschließend einer Transmetallierung mit einer geeigneten Titanverbindung (YTiL₃^{*}) unterworfen (Schema 1). Die so erhaltenen 2-Alkenyltitanate **3** addieren Aldehyde und Ketone über einen cyclischen, sechsgliedrigen Übergangszustand, welches schließlich zu den *Z-anti* konfigurierten Homoaldoladdukten **4** führt. Das Ausmaß der so erzielten Kontrolle über die relative Konfiguration an den beiden neuentstandenen Chiralitätszentren an C-3 und C-4, sowie der Doppelbindung zwischen C-1 und C-2, übersteigt für eine große Palette von Aldehyden 95%-98% *ds*.

Selbstverständlich fallen die 4-Hydroxyenolcarbamate **4** bei ausschließlicher Verwendung achiraler Reagenzien als Racemate an. Um nun zu optisch aktiven und im Idealfall zu enantiomerenreinen Homoaldoladdukten zu gelangen, ist es prinzipiell lediglich nötig, an irgendeiner Stelle der Reaktionssequenz eine ausreichend große diastereomorphe Wechselwirkung unter dem Einfluß eines enantiomerenreinen Hilfsstoffs zu erzeugen. Wie aus Schema 1 ersichtlich, findet als Konsequenz der postulierten Übergangszustände eine Übertragung der Absolutkonfiguration an C-1 über einen pericyclischen 6π -Prozeß auf die C-Atome 3 und 4 statt, so daß eine

Einleitung

Kontrolle der absoluten Konfiguration an C-1 zu einer solchen an den neu geschaffenen Zentren führen muß.

Aus diesen Überlegungen folgt, daß Informationen über die konfigurative Stabilität der metallorganischen Intermediate von hervorragender Bedeutung für die rationale Planung einer asymmetrischen Variante der Homoaldolreaktion sind.

Experimente von *R.W. Hoffmann*⁵⁾ an 2-Alkenylboronsäureestern und solche von *E.J. Thomas*⁶⁾ an 2-Alkenylzinnverbindungen belegen die Wirksamkeit des angesprochenen Chiralitätstransfers. Darüberhinaus zeigen Versuche von *G. Tarara*⁷⁾ und *M. Wilckens*⁸⁾ mit α -chiralen Aldehyden die Invarianz der Titanspezies **3** (X = H) gegenüber von außen herangetragener Chiralität. Weitgehend unabhängig von der Konfiguration des verwendeten Elektrophils wurde stets das Enantiomerenverhältnis *S*-**3** : *R*-**3** in das Diastereomerenverhältnis der isolierten Homoaldoladdukte **4** und *ent*-**4** "übersetzt" (Schema 1). Da man, gestützt durch diese Befunde, davon ausgehen muß, daß **3** konfigurationsstabil ist und seine Absolutkonfiguration in einem 1,3-Chiralitätstransferprozeß effektiv übertragen kann, stellt sich nun das Problem der enantioselektiven Erzeugung dieser Spezies. Die Methoden, die zu diesem Ziel führen sind, wie im folgenden gezeigt wird, vom konfigurativen Verhalten der Li-Verbindung **2** abhängig, welches wiederum mit der Wahl der Hilfsgruppe X in **1** zusammenhängt (Schema 1). Für X = CH₃ und X = *i*-Bu konnte von *Th. Krämer*⁹) weitgehende konfigurative Stabilität der Li-Spezies nachgewiesen werden (Schema 2).

Der im Ausgangscarbamat **5** vorhandene Enantiomerenüberschuß von 84% *ee* wurde mit einer Transferrate von 95% im Produkt **8** konserviert. Die Invarianz der an C-3 und C-4 etablierten Absolutkonfiguration gegenüber dem Chiralitätssinn der α -chiralen Aldehyde *S*-**9** und *R*-**9** steht dabei im Einklang mit den beschriebenen Eigenschaften der Titanverbindung **3**. Stets wurde ausschließlich das 3*S*,4*S*-Diastereomere **10** bzw. **12** isoliert. Der überraschende Befund der Konfigurationsstabilität von **2** mit X = Alkyl (Schema 1), führte so zur bislang erfolgreichsten asymmetrischen Variante der Homoaldolreaktion. Der Nachteil der beschriebenen Methode besteht jedoch in der eingeschränkten synthetischen Breite, die sich durch die aus verschiedenen Gründen zu bevorzugende Verwendung von X = CH₃ in **1** ergibt⁹. Die enantioselektive Erzeugung von *S*-**3** (X = H) gelang *O*. Zschage¹⁰ durch eine asymmetrische Induktion zweiter Ordnun¹¹ (Schema 3). Die nach Deprotonierung von **1** (X = H) mit sec-BuLi in Gegenwart des chiralen Komplexbildners (-)-Spartein **14** erzeugten Alkenyllithiumverbindungen *S*-**2**•**14** (X = H) und *R*-**2**•**14** (X = H) sind in

Lösung konfigurativ instabil und stehen durch Epimerisierung miteinander im Gleichgewicht. Das als Festkörper konfigurationsstabile R-2•14 (X = H) wird diesem durch Kristallisation entzogen und geht mit Tetra(isopropoxy)titan unter Retention der

Konfiguration in die Titanverbindung S-3•14 (X = H) über, die in der beschriebenen Weise reagenzkontrolliert zu den enantiomer angereicherten Homoaldoladdukten 4 (R = iPr, Me; X = H) abreagiert (ee = 80 - 84%, Schema 1).

Ein alternativer Ansatz wäre die Erzeugung einer konfigurativ labilen Lithiumverbindung 2 mit nachfolgender enantiofacialer Differenzierung durch ein enantiomerenreines Transtitanierungsreagenz (YTiL₃^{*}), welches beispielsweise zur bevorzugten Bildung von S-3, und damit letztlich zu einer solchen von 4 führt (Schema 1). Gesucht ist also eine Hilfsfunktion X, mit der 2 konfigurationslabil, 3 aber konfigurationsstabil ist. Ferner darf der Einfluß von X nicht zu einer Torsionslabilität um C-2 und C-3 führen, da sonst die Diastereoselektivität der Reaktion verloren geht. Als aussichtsreich wurden die Sulfonylgruppen SO₂R angesehen, die wegen ihrer Eigenschaft als Elektronenakzeptoren den gewünschten Effekt ausüben sollten.

Einleitung

Darüberhinaus stellt **4** mit $X = SO_2R$ gewissermaßen ein Ketenacetal dar, welches nach Deblockierung unmittelbar das γ -Lacton **17** liefern und so die für diesen Zweck für X = H notwendige Reaktionssequenz über das Lactol **16** überflüssig machen sollte (Schema 4).

Ziel der vorliegenden Arbeit ist es also, zum einen Wege zu modifizierten 2-Alkenylcarbamaten aufzuzeigen, die das System für eine enantiofaciale Differenzierung in der geschilderten Weise durch chiral ligandierte Titanverbindungen vorbereiten, und zum anderen, die dafür benötigten chiralen Liganden zu synthetisieren.

Darüberhinaus wird im zweiten Teil der Arbeit auf das Synthesepotential der zur "Chiralisierung" der Ligandensphäre des Titans bevorzugt herangezogenen optisch aktiven hexavalenten Schwefelverbindungen eingegangen.

B Zur Struktur von α-Sulfonylcarbanionen

Aufgrund der Bedeutung, die den α -metallierten Sulfonen bzw. deren Azaanaloga, den Sulfoximiden, im Rahmen der vorliegenden Arbeit zukommt, sei im folgenden etwas ausführlicher auf deren Struktur und Reaktivität eingegangen.

B1 Experimentelle Befunde

Seit dem Bekanntwerden der carbanionenstabilisierenden Wirkung α -ständiger Schwefelfunktionalitäten hat es nicht an Versuchen gefehlt, diesen Effekt zu deuten und das Synthesepotential auszuloten.

Es waren vor allem die Arbeiten von *E.J. Corey*¹²⁾ und *D.J. Cram*¹³⁾ in den frühen Sechziger Jahren, die durch Untersuchungen an optisch aktiven Sulfonen den asymmetrischen Charakter der entsprechenden α -Sulfonylcarbanionen nachweisen konnten (Schema 5). So wurde für die basenkatalysierte H/D-Austauschreaktion des Sulfons **19** eine Deuterierungsrate gefunden, die die der Racemisierung um das etwa 2000-fache übersteigt^{12a)}. Auch die Frage nach der Struktur der carbanionischen Zwischenstufe durch welche die Zentrochiralität des Ausgangsmaterials im Produkt konserviert wird, konnte durch eine Reihe von eleganten Experimenten weitgehend beantwortet werden. Der stereochemisch konträre Verlauf der thermischen Decarboxylierungen der beiden optisch aktiven Carbonsäuren **24** und **26** zu den entsprechenden Sulfonen **25** und **27** stellt einen starken Hinweis auf ein planar konfiguriertes "Carbanion" **21** in einer chiralen Konformation dar^{12c)}. Läge das carbanionische System als pyramidale Zwischenstufe mit einer hohen Barriere der Inversion vor (**22**), hätte man für beide Experimente ein etwa gleiches Ausmaß an Stereoselektivität zu erwarten. Im Falle einer planaren Zwischenstufe jedoch durchläuft **26** auf dem Wege zu **27** die **23** entsprechende C_s symmetrische Struktur **28** und erleidet so Racemisierung.

B 2 Spektroskopische Befunde und Kristallstrukturanalysen

Zur Ermittlung der Struktur schwefelsubstituierter carbanionischer Systeme wurden vor allem Schwingungs- und NMR-spektroskopische Daten herangezogen. So ergaben IR-Untersuchungen am Sulfon **29**¹⁴⁾ eine Zunahme der Kraftkonstante der C_{α}-S-Bindung als Folge der α -Metallierung, während die Kraftkonstante der S-O-Bindung und die der

-7-

 α -Sulfonylcarbanionen

-9-

spektroskopie erwiesen. Insbesondere die Abhängigkeit der C,H-Kopplungskonstante (${}^{1}J_{CH}$) von der Ladungsdichte und dem Hybridisierungszustand am carbanionischen Zentrum hat viel zum Verständnis α -metallierter Schwefelverbindungen beigetragen. Dieser Zusammenhang wird näherungsweise durch Gleichung 1 wiedergegeben¹⁵⁾.

$${}^{1}J_{CH} \approx k \times \frac{s-Charakter}{Ladungsdichte}$$
 Gl.

Verändert sich der Hybridisierungszustand eines C-Atoms mit der Metallierung nicht, so ist gemäß Gl.1 eine Abnahme der Kopplungskonstante ${}^{1}J_{CH}$ infolge der auftretenden Erhöhung der Ladungsdichte an diesem Kohlenstoffatom zu erwarten. Dies wird bestätigt durch Messungen am System Methyllithium/Methan¹⁶). In resonanzfähigen Spezies jedoch, tritt bald eine Überkompensierung des Ladungseffektes durch die Umhybridisierung auf. So findet man beispielsweise für Me₃P=CH₂, einem System für das man aus Kenntnis der Kristallstrukturen vergleichbarer Phosphorylide¹⁷⁾ Planarität am Kohlenstoff vorraussetzen kann, eine Erhöhung der Kopplungskonstante um 22 Hz¹⁸⁾ gegenüber derjenigen im entsprechenden Phosphoniumsalz.

Für α-Sulfonylcarbanionen ergeben sich so im Falle nicht mesomeriefähiger Systeme Hybridisierungen zwischen sp² und sp³, während solche mit benzylischen und insbesondere allylischen Substituenten praktisch reinen sp²-Charakter am carbanionischen Zentrum aufweisen^{15,19,20)} Die beiden letztgenannten Verbindungstypen sollten also weitgehend planarisiert vorliegen. Die Frage, inwieweit die Rotationsbarriere um die C_α-S-Bindung durch diese zusätzliche Carbanionenstabilisierung herabgesetzt wird - eine Frage, die für eine potentielle Konfigurationstabilität von großer Wichtigkeit ist - muß jedoch offen bleiben. Nachdem so durch die Arbeiten von *Chaissaing* und *Marquet*^{14,15,19,20)} sowie von *E.J.Corey* et

al.¹²⁾ ein recht detailliertes Bild von der Struktur der Anionen in Lösung erhalten worden war, gelangen insbesondere den Arbeitskreisen von *Boche*²¹⁾ und

 C_1 -S-Bindung abnimmt. Aus diesen Befunden leiten die Autoren eine erhöhte Bindungsordnung der C_{α} -S-Bindung, sowie eine sich daraus ergebende Verkürzung des entsprechenden Bindungsabstandes ab. Entsprechendes im entgegengesetzten Sinn soll für die S-O und C_1 -S Abstände gelten.

Als für die Strukturbestimmung besonders wertvoll hat sich jedoch die Kernresonanz-

-11-

-10-

Gais²²) eine Anzahl von Röntgenstrukturanalysen von metallierten Schwefelverbindungen. Diese bestätigen im wesentlichen die Befunde der vorgenannten Autoren. Sowohl die vorhergesagten Bindungskontraktionen (C_{α}-S) und Elongationen (S-O), als auch die planare Struktur der meisten α -Sulfonylcarbanionen wurden durch diese Untersuchungen bestätigt. Besonders auffällig ist dabei die völlige Abwesenheit von C-Li Kontakten (Ausnahme : Phenylcyclopropylsulfon). Das Kation befindet sich ausschließlich zwischen den beiden Sulfonylsauerstoffatomen (Abb. 1). α -Sulfonylcarbanionen haben somit die bereits von *Corey* angenommene asymmetrische Struktur mit planarem carbanionischen Zentrum und dem freien Elektronenpaar *gauche* zu den beiden Sauerstoffatomen.

B3 Theoretische Studien

Parallel zu den Versuchen durch experimentelle Methoden Einblick in Struktur und Reaktivität von α -Thiocarbanionen zu erhalten, hat es nicht an Anstrengungen gefehlt, nach den Ursachen für die carbanionenstabilisierende Wirkung von Schwefelfunktionalitäten zu forschen. Im Vordergrund bei all diesen Bemühungen stand dabei stets die Frage nach der Bedeutung einer potentiellen d-Orbitalbeteiligung durch den Schwefel. Bezüglich dieses, den Mechanismus der Anionenstabilisierung betreffenden Problems, herrscht heute weitgehende Einigkeit zwischen den auf diesem Gebiet führenden Arbeitsgruppen²³⁾. Demnach findet die Stabilisierung nicht durch Konjugation des freien Elektronenpaars am Kohlenstoff (nC $_{\alpha}$) mit einem unbesetztem d-Niveau des Schwefels, sondern mit dem freien σ^*_{sc} -Orbital statt (Abb. 2). Im Einklang damit steht die antiperiplanare Anordnung

der genannten Orbitale in den optimierten Strukturen, die im übrigen auch mit den

Strukturvorschlägen der Spektroskopiker und der Experimentatoren übereinstimmt. Die untergeordnete Rolle der d-Niveaux am Schwefel wurde dabei vor allem aus Struktur-und Protonenaffinitätsrechnungen^{23d)} abgeleitet, bei denen die Resultate invariant gegenüber d-Orbitale berücksichtigende oder vernachlässigende Basissätze waren. Lediglich *S. Wolfe*^{23b)} räumt den d-Niveaux eine gewisse Bedeutung ein, indem er für H₂CSO₂H ein "mixing in" des d_{xz}-Orbitals in das σ^*_{SH} -Orbital postuliert, das so zu einer Verringerung der Energie des Akzeptororbitals und damit zu einer stärkeren attraktiven Wechselwirkung mit dem nC_{α}-Donororbital führt (Abb. 2). Diese leicht modifizierte Vorstellung führt jedoch nicht zu strukturellen Konsequenzen. Auch *S. Wolfe* beschreibt das α -Sulfonylcarbanion als ein System mit planarisiertem anionischem Kohlenstoff, welches seine Asymmetrie aus einer hohen Barriere der Rotation (9.3-14.0 kcal/Mol) um die C_{α}-S-Bindung bezieht und das freie Elektronenpaar *gauche zu* den beiden O-Atomen positioniert.

-12-

C Versuche zur Synthese des 1-Sulfinyl-2-butenylcarbamates 30

Überdenkt man die Rolle der Hilfsfunktionalität X im Carbamat **1** (Schema 1) im Lichte der oben erläuterten Erkenntnisse über die strukturellen Eigenschaften der thiosubstituierten Carbanionen aufs Neue, so gelangt man zu dem Schluß, daß die chirale Arylsulfinylgruppierung (-S^{*}OAr) von besonderer Attraktivität ist. Wie man Schema 6 entnehmen kann, wäre man durch Verwendung des sulfinylsubstituierten Carbamats **30** mit einheitlich konfiguriertem Schwefelatom prinzipiell vom konfigurativen Verhalten des lithiierten Intermediates **31** unabhängig. Im Falle konfigurativer Stabilität (Weg A in Schema 6) würde nach Trennung der beiden diastereomeren Sulfoxide S_{ss} .R-**30** und S_{ss} .S-**30** die Lithiierung zu den Lithiumverbindungen S_{ss} .S-**31** bzw. S_{ss} .R-**31** führen, die, nach Transmetallierung, entsprechend den 1-Alkylcarbamaten unter 1,3-Chiralitätstransfer γ hydroxyalkyliert werden könnten.

Ist die Lithiumverbindung konfigurativ labil (Weg B), geht **30** stereokonvergent unter Verlust der Zentrochiralität an C-1 in **31** über, welches unter potentieller asymmetrischer Induktion durch die S-Chiralität mit einem achiralen Titanreagenz zu **32** (bzw. dem C-1-Epimeren) transmetalliert und in üblicher Weise zum Homoaldoladdukt **33** umgesetzt werden könnte.

Das Hauptproblem bei der Verwirklichung dieser Strategie stellt dabei die Synthese des Ausgangsmaterials **30** dar. Diese Verbindung ist als 2-Alkenylsulfoxid der Gefahr einer zur Racemisierung führenden [2,3]-sigmatropen Umlagerung (Mislow Umlagerung)²⁴⁾ ausgesetzt (Schema 7). So ist beispielsweise der Grundkörper **37** zwar in optisch reiner

Form beschrieben und in einer Reihe von Synthesen²⁵⁾ bereits eingesetzt worden, zeichnet sich aber durch eine oberhalb von 0°C rasche Zersetzung unter Racemisierung aus^{24a,25a,f)}. Die Synthese von optisch reinen 3-alkylsubstituierten Homologen von **37** gelang bislang nicht^{24a,f)}, während allylische Sulfoxide mit aliphatischen Resten am Schwefel unterhalb von ca. 100°C optisch stabil sind^{24d-f)}. Dennoch versuchte man, **30** mit einheitlich konfiguriertem Schwefelzentrum herzustellen (Schema 8).

Dazu wurde das 2-Butenylcarbamat 39 bei -78°C mit n-BuLi/TMEDA deprotoniert und

nach ca. 1 h mit dem nach *Solladie*²⁶ synthetisierten, enantiomerenreinen Menthylester **38**^{*} (kommerziell erhältlich) umgesetzt. Die dünnschichtchromatographische Analyse der Reaktionsmischung zeigte das Auftreten einer großen Anzahl unterschiedlicher Verbindungen an, die sich säulenchromatographisch nicht sauber trennen ließen. In keiner Fraktion konnte **30** zweifelsfrei nachgewiesen werden. Auch die Wiederholung des Experimentes unter veränderten Reaktionsbedingungen brachte keinen Erfolg, so daß man sich entschloß, diesen theoretisch vielversprechenden Ansatz zu verwerfen.

D Synthese der 1-Sulfonyl-2-alkenylcarbamate 45 und 46

Durch das Scheitern der Sulfoxidroute sah man sich veranlaßt, auf die konfigurative Labilität der lithiierten 1-Sulfonyl-2-alkenylcarbamate zu vertrauen und so den bereits in der Einleitung angesprochenen "Sulfonweg" einzuschlagen. Von den vielen denkbaren Möglichkeiten, zum Sulfon **46** zu gelangen, seien im folgenden zwei hervorgehoben (Schema 9).

Gemäß Zugang I sollte also das metallierte Crotylcarbamat **40** mit einem Sulfenylierungsmittel (**49**), also einem Disulfid (n=0) oder einem Thiosulfonsäure-*S*-ester (n=2), zum entsprechenden Sulfid **47** umgesetzt werden, welches durch Oxidation in das Sulfon **46** überführt werden könnte. Dieser Weg erschien erfolgversprechend, da die α -selektive Methylsulfenylierung mit Dimethyldisulfid an **39** bereits beschrieben war²⁷⁾. Ein daraufhin durchgeführter Phenylsulfenylierungsversuch mit Diphenyldisulfid an lithiiertem **39** verlief jedoch nicht zufriedenstellend. Neben einer Reihe in geringen Mengen entstandener, nicht identifizierter Produkte erhielt man die Ausgangsmaterialien praktisch quantitativ wieder zurück. Um dennoch zum gewünschten Produkt zu gelangen, synthetisierte man den Thiosulfonsäure-*S*-ester **50**²⁸⁾, der sich durch eine nukleofugere Abgangsgruppe am S-Atom auszeichnet und so reaktiver sein sollte (Schema 10). Tatsächlich isolierte man nach Reaktion mit **40** 54%

-15-

-17-

-16-

einer Verbindung, die sich laut ¹H-NMR-Spektrum als das γ -sulfenylierte Vinylcarbamat **51** erwies.

Bemerkenswert ist dabei die einheitliche Prochiralität der neuentstandenen 1,2-Doppelbindung, die gemäß der ${}^{3}J_{1,2}$ -Kopplung von 6.4 Hz einheitlich *cis*-konfiguriert ist. Das gewünschte α -Addukt **52** konnte jedoch nicht nachgewiesen werden.

So entschloß man sich, die bekanntermaßen²⁷⁾ α -selektive Methylsulfenylierung mit anschließender Oxidation durch *m*-Chlorperbenzoesäure (MCPBA) zu **45** vorzunehmen (Schema-11),

Nach der unter den oben beschriebenen Bedingungen durchgeführten Deprotonierung von **39** isolierte man nach Reaktion mit Dimethyldisulfid in quantitativer Ausbeute das leicht verunreinigte Sulfid **53**, welches ohne weitere Reinigung mit MCPBA (2.0 Äquivalente) bei 0 °C in Dichlormethan oxidiert wurde. Nach Säulenchromatographie isolierte man in 75% Ausbeute das Sulfon **45**, dessen Struktur durch NMR-spektroskopische Daten sowie einer der Bruttozusammensetzung entsprechenden Elementaranalyse belegt ist. Im IR-Spektrum erscheint die C=O Schwingung bei 1710 cm-¹ und die für eine Sulfonylgruppe charakteristischen Signale²⁹ bei 1320 cm-¹ und 1140 cm⁻¹. Problematisch an dem so in einer kurzen, mit hohen Ausbeuten verlaufenden Synthese zugänglichen Sulfon **45** ist die an die Sulfonyleinheit gebundene Methylgruppe mit ihren aciden H-Atomen, deren unerwünschte Deprotonierung mit der erwünschten an C-1 konkurrieren könnte. Aus diesem Grunde erschien es sinnvoll, eine weitere Strategie zur Synthese des arylsubstituierten Sulfons **46** zu erproben (Schema 12). Dazu synthetisierte man durch eine Metathesereaktion *p*-Toluolsulfonsäurefluorid **48**³⁰ aus dem entsprechenden Chlorid und setzte dieses mit dem lithiiertem Carbamat **40** um.

Bei Verwendung von Ether als Lösungsmittel und 1.1 Aquiv. **48** isolierte man nach 2 h bei -78 °C und 0.5 h bei 0 °C 36%-46% des kristallinen Sulfons **46**, dessen ¹H- und ¹³C-NMRspektroskopischen Daten, sowie die CH-Analyse mit der angegebenen Struktur in Einklang ist. Durch die gegenüber dem Ausgangscarbamat **39** erhöhte Acidität von **46** beträgt die theoretisch zu erwartende Maximalausbeute lediglich 50%, da lithiiertes **39** ständig gebildetes **46** deprotoniert. Um dennoch zu höheren Ausbeuten zu gelangen, setzte man **40** zunächst mit 0.5 Äquiv. des Fluorids **48** um, deprotonierte das zurückgebildete Carbamat **39** erneut und wiederholte diesen Vorgang zwei weitere Male. Dadurch und durch die Verwendung von *n*-Hexan als Lösungsmittel³¹ gelang es, die Ausbeute an Sulfon **46** auf 80% zu steigern. Daneben konnte *P. Tebben* im Rahmen ihrer Diplomarbeit 2% des γ -Adduktes **54** nachweisen³¹.

Durch Studien an einer Reihe verschiedenartig substituierter Carbamate konnte *P. Tebben*³¹⁾ die weitgehende Substratunabhängigkeit des so entwickelten Verfahrens zeigen, wobei lediglich bei den in 3-Position unsubstituierten 2-Alkenylcarbamaten der Anteil des unerwünschten γ -Adduktes auf über 23% steigt³¹⁾. Somit stehen also Methoden zur Synthese der Sulfone **46** und **45** zur Verfügung und es galt nun, ihre Tauglichkeit für das geplante Projekt der Chiralisierung der Homoaldolreaktion über chirale Transtitanierungsreagenzien zu prüfen.

E Umsetzungen der metallierten Sulfone 45 und 46 mit Carbonylelektrophilen

E 1 Sulfon 45

In Anlehnung an die für schwefelfreie Carbamate bewährten Deprotonierungsbedingungen⁴) metallierte man **45** bei -78 °C in Ether mit *n*-BuLi/TMEDA (Schema 13). Nach Zugabe von 2-Methylpropanal rührte man 12 h bei -78 °C nach und arbeitete essigsauer auf. Die dünnschichtchromatographische Analyse des Rohproduktes lieferte keinen Hinweis auf die erwartete Entstehung eines gegenüber dem Ausgangsmaterial polareren Produktes. Das Kapillargaschromatogramm wies zwei Signalgruppen auf, wobei ein Peak in der Gruppe der leichtflüchtigen Bestandteile dem Ausgangscarbamat **45** zugeordnet werden konnte. Die Signalgruppe der schwerer flüchtigen Bestandteile bestand aus vier Peaks, die jedoch laut ¹H-NMR-Spektrum nicht den vier möglichen diastereomeren Homoaldoladdukten der Konstitution **55** zugeordnet werden konnten. Da das Substanzgemisch säulenchromatographisch nicht weiter auftrennbar war und feststand, daß das gewünschte γ -Hydroxyenolcarbamat **55** nicht entstanden war, beschloß man, die Reaktionsbedingungen so zu variieren, daß auch die kurzfristige Generierung instabiler "Carbanionen" nachgewiesen werden kann. Dazu wählte man mit 2,2-Dimethylpropanal ein nichtenolisierbares Elektrophil, welches gleichzeitig mit dem Substrat vorgelegt werden kann. In diesem Fall wurden nach

säulenchromatographischer Reinigung des Rohproduktes 53% eines weißen

Festkörpers isoliert, der laut Kapillar-GC aus zwei Komponenten im Verhältnis 1:1 besteht. Im IR-Spektrum weist eine breite Absorption bei 3470 cm⁻¹ auf die Anwesenheit einer Hydroxygruppe hin, wobei die Banden bei 1315 cm⁻¹ und 1135 cm⁻¹ den Verbleib der Sulfonylgruppe im Molekül anzeigen. Durch Kristallisation und erneute Chromatographie ließ sich eine Komponente bis auf 91% anreichern. Im ¹H-NMR-Spektrum dieser Verbindung erkennt man an den Verschiebungen der Signale der Olefinprotonen bei $\delta = 6.2$ ppm bzw. $\delta = 5.7$ ppm sowie deren Multiplizität die Unverschrtheit des 2-Alkenylteils des Moleküls. Stattdessen findet man bei $\delta = 3.1$ ppm anstelle des Singuletts für die Sulfonylmethylgruppe ein ABM-System, wie es für die diastereomeren Produkte **631A** bzw. **631B**³²⁾ zu erwarten ist. Offensichtlich fand die Deprotonierung nicht am acidesten H-Atom, sondern, wie befürchtet, an der sterisch weniger gehinderten Methylsulfonylgruppe statt. Neben den genannten spektroskopischen Informationen ist die Struktur des β -Hydroxysulfons **631B** auch durch ein ¹³C-NMR-Spektrum sowie eine korrekte Elementaranalyse belegt.

Mit dem Ergebnis dieses Experimentes stand also fest, daß die Metallierung an C-1 nur unter Verwendung basenstabiler Gruppen im nichtallylischen Teil des Sulfons gelingen kann, und man wandte sich so dem Studium der Chemie des Sulfons **46** zu.

E 2 Sulfon 46

Zur Deprotonierung wurde das Sulfon **46** 30 min lang bei -78 °C in THF mit 1.1 Äquiv. LDA versetzt und anschließend mit Aceton als Elektrophil zur Reaktion gebracht (Schema 14). Auch hier wies das Dünnschichtchromatogramm das Reaktionsprodukt als unpolarer als das Ausgangsmaterial aus. Die kapillargaschromatographische Analyse ergab für das Produkt eine um ca. 80% gegenüber **46** verkürzte Retentionszeit. Das Fehlen einer Bande um 3400 cm⁻¹ im IR-Spektrum der Substanz sowie die Abwesenheit der für die Sulfonylgruppe charakteristischen Signale weisen das Reaktionsprodukt als eine hydroxygruppenfreie, desulfonylierte Verbindung aus. Im ¹H-NMR-Spektrum erkennt man an Lage und Multiplizität der bei $\delta = 7.0$ ppm (dq; $J_d = 15.3$ Hz, $J_q = 6.9$ Hz) und $\delta = 6.4$ ppm (dq; $J_d = 15.3$ Hz, $J_q = 1.7$ Hz) erscheinenden Signale das Vorliegen einer methylsubstituierten, *trans*-konfigurierten Doppelbindung. Das Singulett mit der 6H-Atomen entsprechenden Intensität bei $\delta = 1.5$ ppm weist auf die Anwesenheit der Methylgruppen des Acetons hin. Das für die Strukturaufklärung entscheidende Signal war jedoch die bei $\delta = 197.8$ ppm im ¹³C-NMR-Spektrum

-21-

Umsetzungen mit 45/46

auftretende Absorption, die charakteristisch für das Vorliegen einer α , β -ungesättigten Carbonylfunktion ist und so im Zusammenhang mit den anderen Daten zum Strukturvorschlag des Enons **61** geführt hat. Die eingehende Analyse aller ¹³C-¹HKopplungen im protonengekoppelten ¹³C-NMR-Spektrum sowie eine passende Elementaranalyse lassen keinen Zweifel am Vorliegen des Enons **61** als das mit 45% Ausbeute anfallende Reaktionsprodukt zu. Das gewünschte γ -Addukt **60** konnte in der Reaktionsmischung nicht nachgewiesen werden.

Da sich diese neue Variante der nukleophilen Acylierung auch mit Aldehyden als Carbonylkomponente (vergl. Tabelle 2) durchführen ließ, lag es nahe, durch Verwendung α chiraler Aldehyde das Ausmaß einer möglicherweise auftretenden asymmetrischen Induktion auf das neuentstehende Carbinolzentrum zu prüfen (Schema 15).

Dabei stellte man fest, daß 57 mit *O*-geschützten Lactaldehyden unter nahezu vollständiger asymmetrischer Induktion in die einheitlich konfigurierten Enone 63 bzw. 64 übergeht. In den jeweiligen Rohprodukten ließ sich ¹H-NMR-spektroskopisch kein weiteres Diastereomer nachweisen, während man mit Hilfe der GC-MS-Kopplung (CI, Isobutan) neben dem Hauptsignal ein weiteres (unpolareres) identifizieren kann, dessen Molmasse mit dem ersteren übereinstimmt und das etwa 1% des Gesamtsignals repräsentiert. Daraus ergibt sich eine Diastereoselektivität von $ds \ge 99\%$. Wie ebenfalls aus Schema 15 ersichtlich, läßt sich die Ausbeute an Enon durch Zugabe von 1.1-2.0 Äquiv. Tetraisopropoxytitan (TIPT) bis auf 59% für 63 und 55% für 64 steigern. Dieser Befund ist das überraschende Ergebnis des Versuchs, 57 mit TIPT in 65

umzumetallieren, um das Verhalten der titanierten Spezies gegenüber Aldehyden zu studieren (Schema 16). Offensichtlich findet hier keine Transtitanierung sondern, unter Bildung des Komplexes **57-TIPT**, lediglich eine Abschwächung der Basizität der Organometallverbindung statt, wodurch Nebenreaktionen zurückgedrängt werden.

Erst die Verwendung von Chlortris(isopropoxy)titan³³⁾ (CITIO) führte zu einer Änderung des Reaktionsverlaufes (Schema 16). Dazu behandelte man **57** bei -20 °C mit 1.1 Äquiv. CITIO, kühlte erneut auf -78 °C ab und injizierte den Aldehyd. Im Falle des 2-Methylpropanals konnten so 85% des γ -Adduktes **68** isoliert werden, welches laut Kapillar-GC und ¹H-NMR-Spektrum diastereomerenrein anfiel. Die *anti*-Konfiguration an den C-Atomen 3 und 4 ist durch den in der Einleitung angesprochenen Mechanismus der Titanvariante der Homoaldolreaktion festgelegt. Ein Vergleich der Kopplungskonstanten (³J_{3,4}) des erhaltenen Produktes (³J_{3,4}) = 8.6 Hz) mit den von *Th.Krämer*⁹⁴⁾ synthetisierten 1-Methylderivaten **8** ((³J_{3,4})(anti) = 8.5 Hz) und **67** (³J_{3,4})(syn) = 5.8 Hz) bestätigt diese Zuordnung. Aus der extremen Tieffeldverschiebung des an C-2 gebundenen Wasserstoffatoms ($\delta = 6.8$ ppm) schließt man auf die *E*-Konfiguration der neuentstandenen Doppelbindung, da nur so ein durch die Sulfonylgruppe bewirkter Anisotropieffekt auf H-2 wirken kann. Darüberhinaus ist von den sulfonfreien, *anti*-konfigurierten Homoaldoladdukten **15** bekannt, daß die chemische Verschiebung von H-2 den Wert $\delta = 5.5$ ppm nie

überschreitet und so die Carbamoylgruppe nicht für die genannte Tieffeldverschiebung verantwortlich sein kann³⁴⁾.

Setzt man als Carbonylkomponente die chiralen Lactaldehyde *S*-**9**³⁵) und *S*-**62**³⁶) ein (Schema 17), erhält man mit >54% (nach Desilylierung mit 5N Salzsäure in THF) bzw. 65% Ausbeute die entsprechenden Homoaldoladdukte als nahezu exakte 1:1-Diastereomerengemische (**69** : **70** = 55 : 45; **71** : **72** = 51 : 49), die sich bis auf **70** säulenchromatographisch (Kieselgel, E/P) in die jeweils reinen Isomeren auftrennen ließen (Schema 17).

Auch hier erfolgte die stereochemische Zuordnung der Diastereomeren durch Vergleich der Kopplungskonstanten ${}^{3}J_{3,4}$ und ${}^{3}J_{4,5}$ mit denjenigen in den entsprechenden 1-Methylderivaten ${}^{9d)}$ **73-76** (Tabelle 1), deren absolute Konfiguration nach Überführung in ein Tetrahydrofuranderivat röntgenstrukturanalytisch gesichert ist 9e,9d (Tabelle 1).

*Th. Krämer*⁹⁴⁾ konnte zeigen, daß die Kopplungskonstanten ${}^{3}J_{3,4}$ in den 4,5-*anti*-konfigurierten (*Cram*)-Addukten stets größer ist als in den anti-*Cram*-Addukten, während sich die Verhältnisse für ${}^{3}J_{4,5}$ genau umkehren [${}^{3}J_{4,5}(Cram) < {}^{3}J_{4,5}(anti-Cram)$]. Für

das Diastereomerenpaar **69/70** findet man ${}^{3}J_{3,4}$ (**69**, 7.8 Hz) > ${}^{3}J_{3,4}$ (**70**, 6.6 Hz) und ${}^{3}J_{4,5}$ (**69**, 4.1 Hz) < ${}^{3}J_{4,5}$ (**70**, 5.0 Hz) und für **71/72** gilt ${}^{3}J_{3,4}$ (**71**, 7.3 Hz) > ${}^{3}J_{3,4}$ (**72**, 5.9 Hz) sowie ${}^{3}J_{4,5}$ (**71**, 4.2 Hz) < ${}^{3}J_{4,5}$ (**72**, 5.1 Hz). Die mit diesen Daten durchgeführte Zuordnung der Diastereomeren (Tabelle 1) wird darüberhinaus durch die Analyse ihres Elutionsverhaltens an Kieselgel bestätigt. Wegen der in den 4,5-*syn*-konfigurierten (anti-*Cram*)-Addukten stärker ausgeprägten Neigung zur Ausbildung intramolekularer Wasserstoffbrücken sollten diese (wie beobachtet) unpolarer sein als die 4,5-*anti*-konfigurierten (*Cram*)-Derivate (Tabelle 1). Neben den angesprochenen ¹H-NMR-Spektren liegen mit den in Schema 17 angegeben Strukturen in Einklang stehende ¹³C-NMR- und IR-Spektren vor. Darüberhinaus wurden von allen Verbindungen, bis auf das unpolare Diastereomere **70**, welches nicht vollständig vom Ausgangsmaterial abgetrennt werden konnte, korrekte Elementaranalysen angefertigt.

-24-

E 3 Zur Frage der konfigurativen Stabilität der metallierten Intermediate 57 und 65

Wie in der Einleitung erläutert, ist das konfigurative Verhalten der Lithium- bzw. Titanverbindung **57** bzw. **65** von entscheidender Bedeutung für ihre geplante Anwendung in einer asymmetrischen Homoaldolreaktion. Zum Studium dieses Verhaltens wurde ein Verfahren angewandt, das unabhängig voneinander in den Arbeitskreisen von *D. Hoppe* und *R.W. Hoffmann* entwickelt wurde³⁷⁾ und auf dem unterschiedlichen Verhalten von konfigurativ stabilen und konfigurativ labilen Carbanionen gegenüber enantiomerenreinen und racemischen Aldehyden beruht. Setzt man eine konfigurationsstabile, racemische Organometallverbindung mit einem

enantiomerenreinen Aldehyd um, so erhält man nach "vollständigem Umsatz" ein Gemisch der beiden diastereomeren Produkte in einem Verhältnis, welches der Enantiomerenzusammensetzung des Racemats, also einem solchen von 1:1, entspricht (Schema 18).

Wie aus Schema 18 ersichtlich, findet durch den 1,3-Chiralitätstransfer eine "Übersetzung" des Enantiomerenverhältnisses von racemischem 65 in ein Diastereomerenverhältnis statt, welches mit 51% : 49% für 71 und 72 dem theoretisch geforderten Wert exzellent entspricht. Nun ist aber wegen der Diastereomorphie der Wechselwirkung zwischen R-65 und S-62 (ul-Paar) auf der einen und S-65 und S-62 (1k-Paar) auf der anderen Seite mit unterschiedlichen Reaktionsgeschwindigkeiten der Carbonyladdition für die genannten Paarungen zu rechnen. Bietet man also in einem zweiten Experiment statt enantiomerenreinem S-62 den entsprechenden racemischen Aldehyd an, wird sich mehr Produkt über das matched pair³⁹⁾ als über das *mismatched pair*³⁹⁾ bilden und so das Diastereomerenverhältnis von 1:1 verschieden sein. Dies wird für 65 auch tatsächlich beobachtet (rac-71: rac-72 = 69: 31), womit die Konfigurationsstabilität dieser Spezies gezeigt ist. Wäre 65 konfigurationslabil, dürften sich die Ergebnisse beider Experimente nicht unterscheiden, da durch die so gegebene rasche Umwandlung von S-65 in R-65 unabhängig von der Enantiomerenreinheit des Aldehyds stets das für das matched pair geeignete Enantiomer nachgebildet werden könnte. Dies ist, wie ebenfalls aus Schema 18 ersichtlich, für die Lithiumverbindung 57 in der Tat der Fall. Leider tritt hier mit dem Wechsel des Reaktionsweges eine Komplikation auf, die die Deutung des Experimentes erschwert. Dennoch bleibt festzustellen, daß 57 die erhoffte Sensitivität für "von außen herangetragene" Chiralität besitzt, wie sie für eine mit möglichst hoher asymmetrischer Induktion verlaufenden Annäherung eines chiralen Transtitanierungsreagenzes notwendig ist. Im Zusammenhang mit der erwiesenen konfigurativen Stabilität von 65 scheint das Sulfon 46 also alle Voraussetzungen zu erfüllen und stellt damit ein erfolgversprechendes Ausgangsmaterial dar.

E 4 Bildungsmechanismus und Stereochemie der Enone

Die überraschende Bildung der Enone **66** (Abschnitt **E 2**, Schema 16) aus dem lithiierten Sulfon **57** und insbesondere die dabei durch α -chirale Aldehyde ausgeübte hohe asymmetrische Induktion wirft natürlich die Frage nach dem Mechanismus ihrer Genese und der absoluten Konfiguration des neuentstandenen Chiralitätszentrums auf.

Durch Einbindung der interessierenden Stereozentren in ein cyclisches System mit eingeschränkter konformativer Beweglichkeit war es *P. Tebben*³¹⁾ möglich, die relative Konfiguration des neugebildeten Stereozentrums mittels der ¹H-NMR-Spektroskopie zu ermitteln. Dazu benutzte sie die 1,3-Dioxan-2-one, deren Vorzugskonformation entsprechend dem Cyclohexansystem- ein Sessel ist⁴⁰⁾. Messungen am Dioxanon **81** ergaben für die vicinale Kopplungskonstante zwischen Protonen in äquatorial, axialer Stellung (H_e,H_a) kleine Werte zwischen 1.0 und 3.0 Hz, während die bisaxiale Kopplung mit 8.0 bis 12.0 Hz deutlich größer ist⁴¹⁾. Dieser Befund war zuvor von *Nakata et al.*⁴²) zur Bestimmung der relativen Konfiguration im 1,3-Dioxanon **82** und auch im Acetal **83** angewandt worden (Schema 19).

Im Rahmen ihrer Diplomarbeit synthetisierte *P. Tebben*³¹) durch Reduktion mit Lithiumaluminiumhydrid die sich von **84** bzw. **85** ableitenden diastereomeren Alkohole **86** und **87** bzw. **88** und **89**, die mit Carbonyldiimidazol in die entsprechenden Dioxanone überführt wurden (Schema 20).

Die ¹H-NMR-spektroskopische Analyse eines der beiden isolierten Dioxanone ergab ³ $J_{4,5} = {}^{3}J_{5,6}$ = 2.1 Hz, während im anderen für die entsprechenden Kopplungen ein Wert von 6.6 Hz gefunden wurde. Da nur in **90** die mit den gefundenen kleinen Kopplungen von ${}^{3}J_{4,5}$ und ${}^{3}J_{5,6}$ korrespondierende Protonensequenz H_a,H_e,H_a vorliegt, muß **90** aus **86** und damit aus dem Enon **84** hervorgegangen sein. Für das aus dem diastereomeren Alkohol **87** entstandene Dioxanon **91** erwartete man infolge der 4H_e, 5H_e, 6H_a Anordnung (bzw. 4H_a, 5H_a, 6H_e im konformeren Sessel **91a**) der interessierenden Protonen eine kleine (ca. 2 Hz) und eine große (ca. 11 Hz) Kopplung. Die tatsächlich beobachtete Kopplungskonstante liegt mit 6.6 Hz jedoch zwischen diesen Extrema und deutet auf das Vorliegen von **91** in der Twist-Boat-Konformation **91b** hin, in der antibindende Vierelektronen-Zweizentren-Wechselwirkungen axialständiger Substituenten mit jeweils einem freien Elektronenpaar am O-Atom minimiert sind. Die in **656b** auftretenden Diederwinkel zwischen H₄/H₅ und H₅/H₆ betragen 130° bzw. 50°,

-29-

und sind über die Karplus-Beziehung⁴³⁾ gut mit der beobachteten Kopplungskonstante von 6.6 Hz zu korrelieren. Damit ist gezeigt, daß die Enone **66** bezüglich C-5 und C-6 *syn*-konfiguriert sind. Aus der Kenntnis der absoluten Konfiguration an C₆ (dieses Zentrum wurde mit dem *S*-Lactaldehyd eingebracht) läßt sich so die *S*-Konfiguration des neuentstandenen Chiralitätszentrums an C-5 ableiten.

E 4.1 Zum Mechanismus

Zur mechanistischen Deutung der hochdiastereoselektiv verlaufenden Enonbildung aus dem metallierten Sulfon 57 und einem α -chiralen Aldehyd 95 erscheint es sinnvoll, einen Primärangriff des Elektrophils auf die α -Position des lithijerten Sulfons 57 anzunehmen (Schema 21). Aus Gründen der Vereinfachung sei dabei zunächst nur die zum Cram-Addukt führende Annäherung des Nukleophils von der Re-Seite des Aldehyds berücksichtigt (Schema 21, Weg A). Unter Berücksichtigung der Befunde von *Boche*²¹⁾ und *Gais*²²⁾, wonach α -Sulfonylcarbanionen über einen 8-gliedrigen Ring zu dimeren Einheiten verknüpft sind, gelangt man zum Primäraddukt 96. Dieses geht unter Inversion der Konfiguration an C-4, dessen Konfiguration infolge des Verlöschens dieses Chiralitätszentrums am Ende der Reaktionssequenz keine Rolle spielt, in das trans-1-Vinyl-1-carbamoyloxy-oxiran 98 über. Die Öffnung des Epoxids durch die Carbamoyloxygruppe führt unter Inversion der Konfiguration an C-5 zum 5,6-syn-konfigurierten Enon 99. Der alternative Weg B (Schema 21) beschreibt eine Wanderung der Carbamoylgruppe im anti-Cram-Addukt 97 über einen 5-gliedrigen Übergangszustand mit nachfolgender Eliminierung von p-Toluolsulfinat als Aggregat 100 zum beobachteten Enon 99. Entlang dieses Reaktionskanals wird also der an C-5 induzierte Chiralitätssinn im Produkt konserviert.

Für beide Umlagerungen sind Beispiele bekannt (Schema 22). So wurde bei der Michael-Addition des Allylcarbamates **101** an das Enon **102** eine Carbamoylgruppenwanderung zum benachbarten Alkoxidsauerstoff beobachtet (Schema 22)³¹⁾. Entsprechendes fanden *Queguiner*⁴⁴⁾ et al. für die Lithiumverbindung **105**.

Eine dem Weg A (Schema 21) entsprechende Wanderung einer Carbamoyloxygruppe wurde von *J. Lüßmann*⁴⁵⁾ im Epoxid **107** nachgewiesen (Schema 23).

Konstitution und Konfiguration von **110** sind durch eine Röntgenstrukturanalyse gesichert⁴⁵⁾. Unter der Annahme eines schwach endergonischen Additionsschrittes

erscheint es denkbar, daß bevorzugt das *Cram*-Addukt **96** rasch unter Sulfinatextrusion über das Epoxid **98** zum Enon **99** abreagiert, während in den anderen, in niedrigen Gleichgewichtskonzentrationen vorliegenden Diastereomeren, dieser Weg erschwert ist (Schema 21). Nicht ausgeschlossen werden kann jedoch, daß ein Teil des Produktes aus den anti-*Cram*-Addukten **97** über die bereits angesprochene Wanderung der Carbamoylgruppe gebildet wird. Darüberhinaus könnte die, als Folge der dimeren Natur der involvierten metallorganischen Zwischenstufen, auftretende Spezies **100** eine Erklärung für die oft nur zwischen 50 und 60% liegenden Ausbeuten an Enon **99** bieten. Möglicherweise ist in diesem Aggregat die Nukleophilie des 2-Akenylrestes R stark gegenüber derjenigen in **57** herabgesetzt, so daß bevorzugt nur ein Kohlenstoffnukleophil pro dimere Einheit übertragen wird.

E 4.2 Vergleich mit bereits bekannten Methoden der nukleophilen Acylierung

Zu den ältesten Methoden der Umpolung⁴⁶⁾ der Carbonylreaktivität ($a^1 \rightarrow d^1$ Transformation) gehört die reversible Homologisierung mit Cyanid- bzw. Thiazoliumionen, wie sie vor allem von Stetter et al.⁴⁷⁾ in die organische Synthese eingeführt wurde. Diese Methoden haben, neben dem großen Vorzug mit katalytischen Mengen des "Kondensationsmittels" auszukommen, aber den Nachteil, mit α,β-ungesättigten Aldehyden nur schlechte Ausbeuten zu liefern^{47d)}. Darüberhinaus liegen trotz des umfangreichen experimentellen Tatsachenmaterials bislang keine Erkenntnisse über das mit chiralen Carbonylkomponenten erzielbare Ausmaß der 1,2 Induktion vor. Die moderneren Varianten der nukleophilen Acylierung beruhen entweder auf der Seebach' schen Dithianmethode47b) oder gehen von verschiedenartig geschützten Cyanhydrinen aus^{48,49)}. Die mit diesen Reagenzien erzielten Resultate sind in Schema 24 zusammenfassend dargestellt.

Ausgehend von einem durch die Funktionalitäten X und Y umgepolten Crotonaldehyd 111 erhält man je nach angewandter Methode die sich von den Verbindungen 112^{48a)}, 113^{49a)} und 114⁵⁰⁾ ableitenden Anionen, die sich in Abhängigkeit vom Lösungsmittel, Substitutionsmuster, Elektrophil und der Schutzgruppe in unterschiedlicher Weise mit Carbonylverbindungen umsetzen. Im Falle der Hünig'schen O-Silvlcvanhydrine 112

-33-

Umsetzungen mit 45/46

-35-

Umsetzungen mit 45/46

-34-

isoliert man bei Deprotonierung in Ether und Verwendung von *n*-Heptanal nur die beiden gewünschten 1:1-Addukte **115** und **116** (R = Me), während in THF **116** und **117** (das Ergebnis einer Michael-Addition von lithiiertem **112** an **116**) im Verhältnis 53 : 47 entstehen.

Die Verwendung der Ethoxyethylschutzgruppe⁴⁹⁾ verhindert zwar die Bildung von 2:1-Addukten, führt aber zu Reaktivitätsverminderung und macht einen Deblockierungsschritt zum α -Hydroxyketon **119** notwendig. Darüberhinaus ist die α,γ -Selektivität hier sehr stark von der Temperatur abhängig^{49b)}.

Noch komplizierter liegen die Verhältnisse für das 2-Alkenyldithian **114**, das durch Deprotonierung in das entsprechende ambivalente Anion übergeht. Die Reaktion mit aliphatischen Aldehyden liefert hier in hohen Ausbeuten die *anti*-konfigurierten γ -Addukte **120**, während Ketone mit kleinen Resten R praktisch ausschließlich die α -Position angreifen und zur Bildung der α -Hydroxydithiane **121** führen^{50a)}. Ketone mit raumerfüllenden Substituenten schließlich bevorzugen wieder die γ -Position^{50a)}.

Für alle hier vorgestellten Verfahren gibt es keine Studien zur Diastereoselektivität der α-Addition chiraler Aldehyde und die oft extreme Abhängigkeit der Carbonyladdition von strukturellen und experimentellen Parametern problematisieren ihren Einsatz in der organischen Synthese. Demgegenüber ist die in vorliegender Arbeit vorgestellte nukleophile Acylierung mit γ-alkylsubstituierten 2-Alkenylsulfonylcarbamaten wie **46** sowohl von strukturellen Parametern im Substrat und im Elektrophil, als auch von Lösungsmitteleffekten weitgehend unabhängig³¹⁾. Erfreulicherweise gilt dies auch für die bisher in allen Fällen beobachtete außerordentlich hohe asymmetrische Induktion auf das neuentstandene Carbinolzentrum; eine Beobachtung, die für nukleophile Acylierungen bislang ohne Beispiel ist (Tabelle 2). Ein Nachteil besteht allerdings darin, daß sich die *N*,*N*-Diisopropylcarbamoyl-Gruppe nur schwer entfernen läßt. Erste erfolgversprechende Ansätze zu ihrem Ersatz durch leichter abspaltbare Gruppen liegen jedoch bereits vor⁵¹.

46 SO	2Tol	1. n-BuLi 2. R'RCHO	+ /	R'R 123 R OCb	
R	R'	Solvens	Nr.	Ausbeute	ds ^{a)}
iPr	H	Ether	59	55%	1
iPr	Н	THF	59	52%	1
Me	Me	THF	61	45%	1
OBn	н	THF	64	55%	≥99%
OTBDMS	н	THF	63	59%	≥ 99%

-36-

F Synthese der chiralen Liganden

Die Auswahl eines zur Chiralisierung der Ligandensphäre des Titans geeigneten organischen Liganden ist in komplizierter Weise sowohl von den chemischen Eigenschaften des Kations, als auch von stereochemischen Anforderungen abhängig. So ist beispielsweise bekannt, daß stickstoffhaltige Transtitanierungsreagenzien durch deren erhöhte Oxophilie⁵²⁾ in Homoaldolreaktionen höhere Diastereoselektivitäten bewirken als die entsprechenden sauerstoffhaltigen Verbindungen. Leider neigen Stickstoff-Titanverbindungen mit mehrzähnigen Liganden, wie Untersuchungen von *Bürger* und *Dämmgen*⁵³⁾ sowie eigene Studien⁵⁴⁾ zeigten, in extremer Weise zur Bildung oligomerer oder polymerer Produkte, so daß die Isolierung reiner, monomerer Azatitanaheterocyclen bis auf wenige Ausnahmen⁵³⁾ praktisch unmöglich ist. Dennoch konnte im Rahmen der Diplomarbeit⁵⁴⁾ mit dem chiralen Azatitanasystem **128** für das Homoaldoladdukt **129** ein Enantiomerenüberschuß von 40% *ee* erzielt werden (Schema 25).

Die Ursache für die hohe Polymerisationsneigung der Azatitanasysteme fand man Ende der siebziger Jahre⁵⁵⁾ in der hohen Nukleophilie des Stickstoffs, weshalb man zur Synthese akzeptorsubstituierter Vertreter dieser Stoffklasse wie **130**^{55a)}, **131**^{55c)} und **132**^{55d)} überging (Schema 26). Diese Verbindungen weisen tatsächlich eine hohe Stabilität auf und sind gut charakterisierte, monomere Festkörper bzw. destillierbare

Flüssigkeiten (**131** zersetzt sich erst oberhalb 140 °C, von **132** existiert eine Röntgenstrukturanalyse^{55d}) Im Lichte dieser Erkenntnisse lag es also nahe die stabilisierende Wirkung des Akzeptorsubstituenten mit der für das Projekt notwendigen Darstellung eines chiralen Titanreagenzes zu kombinieren. Berücksichtigt man nun noch den Umstand, durch Verwendung C₂-symmetrischer Liganden das potentiell durch Zentrochiralität am Titan auftretende Problem mit diastereomeren, möglicherweise unterschiedlich induzierenden Organotitanverbindungen umgehen zu können, gelangt man zu folgender, schematischer Struktur eines "idealen Reagenzes":

Da die Chiralitätszentren (*) möglichst Glieder des aufzubauenden Heterocyclus' und gleichzeitig als Elektronenakzeptor fungieren sollten, lag es nahe, für diese Positionen entsprechend substituierte Schwefel bzw. Phosphoratome zu verwenden. Da insbesondere im Bereich der Chemie optisch aktiver Schwefelverbindungen umfangreiches experimentelles Material vorlag⁵⁶ und hier in der Regel

-39-

stereospezifische Transformationen mit höherer Effektivität verlaufen als in den entsprechenden phosphorhaltigen Systemen⁵⁶, entschloß man sich, chirale Schwefel-Stickstoff-Systeme auf ihre Eignung als Liganden zu untersuchen. Unter Einbeziehung aller oben formulierter Anforderungen entwarf man das methylenverbrückte, C₂-symmetrische Bissulfoximid **133**, dessen retrosynthetische Zerlegung in Schema 27 dargestellt ist. Die 1,2disconnection⁵⁷ des zweifach geschützten Sulfoximids **133** führt auf die Bausteine **136** und **137**, wobei das Sulfoximid **136** durch stereospezifische Iminierung⁵⁸⁾ aus dem Sulfoxid **138** darstellbar sein sollte. Problematischer ist die Synthese des enantiomerenreinen Schwefel(VI)-Elektrophils **137** (X = F, Cl, OR), da hier die Schutzgruppe gleichzeitig chirales Auxiliar sein muß (s.u.). Darüberhinaus ist auch der zum Zielmolekül führende Kupplungsschritt nicht unproblematisch⁵⁹⁾. Somit lag es auf der Hand, zunächst Weg B zu prüfen, zumal für **38** und **142** bereits ausgearbeitete Synthesen publiziert waren²⁶) und auch das Bissulfoxid **141** in einer ausbeutearmen Reaktionssequenz in mäßiger optischer Reinheit bereits hergestellt worden war⁶⁰ (Schema 28).

Ausgehend vom enantiomerenreinen Sulfoxid **142** führte die Bromierung unter Inversion der Konfiguration⁶¹) zum Bromid **145**, dessen Sulfenylierung und anschließende Oxidation ein Gemisch der diastereomeren Bissulfoxide *R*,*R*-**141** und *meso*-**141** lieferte. Das dabei mit einer Ausbeute von 20% anfallende optisch aktive Derivat wies einen Drehwert von $[\alpha]^{20}_{D} = -235^{\circ}(c = 1.0, Aceton)$ auf und wurde von den Autoren⁶⁰ fälschlicherweise als *S*,*S*-konfiguriert beschrieben (s.u.). Um dieser uneffektiven, mehrstufigen Synthese zu entgehen, plante man gemäß Schema 21 die Verknüpfung der beiden homochiralen S(IV)-Bausteine **38** und **142** im Sinne der klassischen *Andersen*-Synthese⁶².

F 1 Synthese des Bissulfoximids (S,S)-141

Dazu deprotonierte man das Sulfoxid **142**, welches aus Methylmagnesiumiodid und dem Menthylsulfinat **38** in ca. 80% Ausbeute leicht zugänglich ist²⁶⁾, mit 1.1 Äquiv. LDA bei -20 °C in THF und brachte die so erhaltene Lithiumverbindung erneut mit dem enantiomerenreinen (*S*)-(-)-Menthylester **38** zur Reaktion (Schema 29). Nach wäßriger Aufarbeitung und säulenchromatographischer Reinigung erhielt man mit 37% Ausbeute einen weißen, kristallinen Festkörper, der sich durch sein ¹H-NMR-Spektrum als **141** identifizieren ließ. Von besonderer analytischer Bedeutung ist hierbei das Auftreten der Methylenresonanz als scharfes Singulett bei $\delta = 4.0$ ppm. Nur in der

optisch aktiven Form mit gleichsinniger Chiralität an den Schwefelatomen sind die beiden H-Atome der Methylenbrücke enantiotop und damit isochron; im Falle des *meso*-Diastereomeren sollte infolge ihrer Diastereotopie ein AB-Spinsystem auftreten. Dieses wurde jedoch auch im Rohprodukt nicht beobachtet, so daß man von einem stereochemisch einheitlichen Verlauf der Reaktion unter Inversion der Konfiguration am S-Arom des Sulfinsäureesters **38** ausgehen muß.

Im Widerspruch zu den Drehwertangaben von S. Colonna⁶⁰⁾ für das enantiomere Bis-

sulfoxid ($[\alpha]_{D}^{20} = -235^{\circ}$ für (*R*,*R*)-141) findet man für gemäß Schema 29 synthetisiertes (*S*,*S*)-141 einen solchen von $[\alpha]_{D}^{20} = +318^{\circ}$ (c = 1, Aceton). Ein der Struktur entsprechendes ¹³C-NMR-Spektrum, sowie eine korrekte Elementaranalyse belegen im Zusammenhang mit dem bereits erläuterten ¹H-NMR-Spektrum die Richtigkeit der Struktur. Bedingt durch die Tatsache, daß die Methylenprotonen in (S,S)-39 eine höhere Acidität aufweisen als die in 142, kommt es im Verlauf der Synthese stets zu einer Umprotonierung, sodaß bei Verwendung äquimolarer Mengen Base die theoretische Ausbeute 50% nicht überschreiten kann. Die Verwendung von mindestens 3 Äquiv. Base zur Deprotonierung von 142 sollte ein Ausweg sein; entweder durch Mehrfachdeprotonierung von 142 oder durch erfolgreiche Konkurrenz der Base mit 147 um die aciden Protonen des Produktes. Tatsächlich erhielt man mit 5 Äquiv. Kalium-tert-butylat (KTB) das Kupplungsprodukt in 89% Ausbeute (Schema 29); leider jedoch als 70 : 30 Mischung zugunsten des *meso*-Diastereomeren (R,S)-141, wie man durch Analyse des ¹H-NMR-Spektrums des Rohproduktes ermitteln konnte (tatsächlich findet man im Spektrum der meso-Verbindung (R,S)-141 das erwartete AB-Spinsystem für die Methylenprotonen). Offensichtlich kommt es hier zu einer nukleophilen Substitution des überschüssigen tert-Butylats an (S,S)-141 unter Generierung des tert-Butylsulfinats 148, das mit ebenfalls gebildetem 147b stereounspezifisch sowohl zu (S,S)-141 zurück, als auch zur meso-Form (R,S)-141 reagieren kann (Schema 30).

Unter der Annahme, *meso*-**141** sei thermodynamisch stabiler als die optisch aktive Form (s. unten), wird das Experiment verständlich. Im Lichte dieser Überlegungen sollte die Verwendung einer großen, sperrigen, möglichst wenig nukleophilen Base durch Erschwerung des Angriffs an den Schwefelatomen in (S,S)-**141** zum Erfolg führen. Diese Hypothese konnte durch den Einsatz von Lithiumhexamethyldisilazan

-41-

(LHMDS) bestätigt werden (Tabelle in Schema 29, Eintrag 3). Die Metallierung des Sulfoxids **142** mit 3.3 Äquiv. LHMDS lieferte nach zweistündiger Reaktionsdauer mit **38** bei -78 °C 91% des enantiomerenreinen Bissulfoxides (*S*,*S*)-**141** und 60% durch Destillation zurückgewonnenes Menthol.

F 2 Synthese von 144

Da es für den geplanten Einsatz des Bissulfoximids **133** (Schema 27) in metallorganischen Reaktionen sinnvoll erschien, die aciden Protonen in der Vorstufe **141** durch Alkylgruppen zu ersetzen, versuchte man das Dimethylbissulfoxid **144** entsprechend Schema 31 aus (*R*)-(+)-Isopropyl-tolyl-sulfoxid **143** (gemäß Lit.⁶³⁾ in 86% Ausbeute aus **38** hergestellt) zu synthetisieren. Dazu deprotonierte man **143** (\geq 96% *ee*) mit 1.1 Äquiv. LDA in THF und setzte das so erhaltene α -Sulfinylcarbanion **150** mit dem Sulfinsäureester **38** bei -78 °C um. Nach säulenchromatographischer Reinigung des Rohproduktes isolierte man 58% einer kristallinen Substanz, dessen ¹H-NMR-Spektrum die beiden Methylgruppen als anisochron und damit diastereotop ausweist. Dies und die Tatsache eines verschwindenden Drehwertes führte zu dem Schluß, daß das vorliegende Reaktionsprodukt das *meso*-Diastereomere (*S*,*R*)-**144** darstellt.

Zur Deutung dieses überraschenden Befundes ging man wieder von der thermodynamischen Begünstigung der *meso*-Form aus. Unterstellt man darüberhinaus zunächst einmal den stereochemisch einheitlichen Verlauf (Inversion) der nukleophilen Substitution von **150** am Sulfinylelektrophil **38**, könnte *meso*-**144** über den im Schema 31 gezeigten Katalysecyclus (Weg A) entstanden sein. Im Überschuß eingesetztes LDA reagiert zunächst unter Inversion der Konfiguration⁶⁴⁾ zum Sulfinamid **149**, welches dann unter erneuter Inversion und Regenerierung des LDA mit **150** in *meso*-**144**. Das dazu benötigte **38** entstammt dabei dem vorgelagerten Additions-Retroadditionsgleichgewicht mit dem lithiierten Sulfoxid **150**. Träfe dieser Epimerisierungsmechanismus zu, sollte die Verwendung von *n*-BuLi durch Unterbrechung des Katalysecyclus' zu optisch aktivem **144** führen. Leider lieferte ein unter entsprechenden Bedingungen ausgeführtes Experiment wieder ausschließlich *meso*-**144** mit 68% Ausbeute, woraus zu schließen ist, daß entweder die Reaktion unter Retention der Konfiguration am Sulfinatzentrum abläuft (Weg B), oder **38** und **150** stereounspezifisch miteinander reagieren und so gemäß Weg C in Schema 31 das thermodynamisch bevorzugte *meso*-Diastereomere angereichert wird. Im erstgenannten

und Rete nve pTol DTol Menth 0=0 0=0 S,S-141 0=0 0=0 H Weg 43 0=0 Retentio B ^DTol LDA Weg 50 enth 150 OMenth MO O=S 0 -0 0=0 150 NiPr2 **Tok** pTol. pTol 49 0=0 pTok • Weg LiNiPr-(LDA) pTol 0=0 31 Schema 0=0. pTol

-43-

Fall sollte der Einsatz von *ent-***38** zum Ziel führen. Aber auch in diesem Experiment wurde ausschließlich optisch inaktives *meso-***144** erhalten, woraus man einen starken Hinweis auf die Gültigkeit der letztgenannten Hypothese ableiten kann. Da, wie Kontrollexperimente zeigten, weder der Sulfinsäureester **38** noch das Sulfoxid **143** unter den Reaktionsbedingungen epimerisiert bzw. racemisiert, muß als Ursache für den stereounspezifischen Verlauf der Reaktion ein uneinheitlicher Verlauf des Substitutionsschrittes (Inversion *und* Retention) angenommen werden.

Um dennoch zu optisch aktivem (S,S)-144 zu gelangen, versuchte man die geminale Dimethylierung von (S,S)-141 (Schema 32).

Auf diesem Wege gelang es schließlich, optisch aktives Dimethylbissulfoxid **144** in 64% Ausbeute zu erhalten, wobei allerdings stets wechselnde Mengen *meso-***144** auftraten. Sie wurden durch Kalium-*tert*-butylat (KTB) katalysierte Epimerisierung, wie sie bereits bei der Synthese von **141** beobachtet worden war (Schema 29), gebildet. Aus dieser Beobachtung, und der Tatsache, daß man optisch aktives **144** durch Behandlung mit KTB in THF in *meso-***144** überführen kann, folgt unmittelbar die Gültigkeit der obigen Annahme, *meso-***144** sei thermodynamisch stabiler als die optisch aktive Form.

Von beiden Bissulfoxiden wurden mit der Struktur in Einklang stehende ¹H-NMR-, ¹³C-NMR- und IR-Spektren sowie jeweils eine korrekte Elementaranalyse erhalten.

F 3 Zur Synthese der Bissulfoximide 135 und 134

Die wenigen literaturbekannten Verfahren, die ausgehend von Sulfoxiden zu optisch aktiven Sulfoximiden **158** führen, sind in Schema 33 zusammengefaßt.

Gemeinsames Merkmal all dieser Iminierungsreaktionen ist ihr potentieller Verlauf über nitrenoide Intermediate^{65a)} und die damit verknüpfte Reaktion unter Retention der Konfiguration am Schwefel^{65b)}. Insbesondere das von *Johnson* et al.⁵⁸⁾ entwickelte Verfahren zur Synthese der "freien" Sulfoximide unter Verwendung von

Mesitylensulfonylhydroxylamin $(MSH)^{66}$ verdient besondere Beachtung, da hier die Entfernung einer Schutzgruppe am Stickstoff entfällt, welches neben Ausbeuteverlusten wegen der mitunter drastischen Reaktionsbedingungen (z.B. konz. H₂SO₄) oft teilracemische Produkte liefert⁵⁸). Erstmalig angewandt und zur Synthese achiraler, oder racemischer Sulfoximide eingesetzt wurde die Methode von *Y. Tamura* im Jahre 1972⁶⁷, wobei gleichzeitig nachgewiesen wurde, daß die Reaktion über die als Mesitylensulfonate isolierbaren *S*-Aminosulfoxoniumionen **159** verläuft (Schema 34).

Johnson gelang dann durch Iminierung von (+)-**160**, dessen Absolutkonfiguration bekannt war⁶⁸⁾, und anschließende Desiminierung unter Retention⁶⁹⁾ mit HNO₂ der Nachweis, daß die vom Sulfoxid **155** zum Sulfoximid **158** führende Reaktionssequenz ebenfalls unter Retention der Konfiguration verlaufen muß.

F 3.1 Umsetzungen der Bissulfoxide (*S*,*S*)-144 und (*S*,*S*)-141 mit MSH

Bringt man das Bissulfoxid 144 mit 1.4 Äquiv. MSH bei Raumtemp. in Dichlormethan

zur Reaktion, isoliert man nach alkalischer Aufarbeitung⁵⁸⁾ und säulenchromatographischer Reinigung mit 68% Ausbeute ein farbloses Öl, dessen IR-Spektrum die für Sulfoximide charakteristischen Banden⁵⁸⁾ bei 1230 cm-¹ [v(N=S=O)] und 3280 cm-¹ [v(=N-H)] aufweist (Schema 35). Im ¹H-NMR-Spektrum jedoch erkennt man im Aromatenbereich zwei "AB"-Spinsysteme mit deutlich verschiedenen relativen Verschiebungen der *m*- und *o*-Protonen. Durch Vergleich mit dem ¹H-NMR von **144** läßt sich der zu tiefem Feld (δ = 7.95 ppm) verschobene A-Teil den *ortho*-Protonen der *p*-Tolylgruppe am Sulfoximidschwefel zuordnen, während der bei hohem Feld erscheinende "A"-Teil die gleichzeitige Anwesenheit eines tetravalenten Schwefelatoms anzeigt. Offensichtlich führte die Reaktion trotz des Überschusses an MSH nur zum Monosulfoximid **163**, für das neben den genannten spektroskopischen Daten auch eine der Summenformel entsprechende CH-Analyse erhalten werden konnte.

Geleitet durch die Beobachtung, daß im Verlauf der Iminierung ein weißer, opaleszierender Niederschlag auftrat, der möglicherweise aus dem in Dichlormethan unlöslichen *S*-Aminosulfoxoniumsalz **162** besteht, verfiel man auf den Gedanken, die Reaktion durch Wahl von Methanol als Solvens in homogener Phase zu führen. Aber auch in diesem Fall isolierte man nur **163**, allerdings mit verbesserter Ausbeute (75%). Um dennoch die zweite Sulfoxidgruppe zur Reaktion zu bringen, führte man das Experiment bei erhöhter Temperatur (60 °C) in Benzol durch. Dabei isolierte man in 89% Ausbeute eine optisch aktive Verbindung, deren IR-Spektrum das Vorliegen eines Sulfoximids anzeigt. In einem unter CI-Bedingungen (Isobutan) aufgenommenen Massenspektrum rescheint der [M+1]⁺-Peak als Basispeak bei m/e = 196 und das ¹H-NMR-Spektrum zeigt zwei Quartettsignale bei $\delta = 6.26$ ppm und $\delta = 5.64$ ppm mit

einer kleinen (0.90 Hz) und einer großen (1.55 Hz) allylischen Kopplung zu einer bei $\delta = 1.99$ ppm absorbierenden Methylgruppe. Aus diesen Daten läßt sich das Vorliegen des 1,1disubstituierten Olefins **164** ableiten (Schema 35). Dabei bewirkt die captodative Substitution an C-1 das Verschwinden der Geminalkopplung der olefinischen Protonen⁷⁰). Die der Struktur entsprechende Multiplizität und Verschiebung der Signale im *gated-decoupled*-¹³C-NMR-Spektrum sowie eine korrekte Elementaranalyse runden den Strukturbeweis ab.

Da unter keinen der geschilderten Reaktionsbedingungen die Bildung des Bissulfoximids **135** nachgewiesen werden konnte, mußte man davon ausgehen, daß die Nukleophilie des zweiten Schwefelatoms im *S*-Aminosulfoxoniumsalz **162** zu dessen elektrophiler Aminierung durch ein zweites Äquivalent MSH nicht mehr ausreicht und statt dessen bei erhöhter Temperatur eine thermische *cis*-Eliminierung⁷¹ eintritt, die nach alkalischer Aufarbeitung zum Vinylsulfoximid **164** führt. Dies gilt sicher auch für

-47-

Chirale Liganden

der Summenformel entsprechenden Elementaranalyse gesichert. Dies trifft auch für die beiden erstmals synthetisierten N-Benzylsulfoximide 169 und 170 zu, wobei ersteres durch Benzylierung des mit KTB deprotonierten Sulfoximids 168⁵⁸⁾mit einer Gesamtausbeute von 55% (bezogen auf 142) hergestellt wurde. Das Sulfinylsulfoximid 170 erhielt man unter den für das Bissulfoxid 141 entwickelten Reaktionsbedingungen (s. Abschnitt F 1) mit 90% Ausbeute durch Kupplung von lithiiertem 169 mit dem Menthylester 38, womit die Anwendbarkeit des Verfahrens auch für Schwefel(VI)-Nukleophile gezeigt war. Leider reagierte 167 mit MSH nicht in der gewünschten Weise; es wurde lediglich Ausgangsmaterial und, infolge der alkalischen Aufarbeitung, ca. 20% Hydrolyseprodukt **166** isoliert (Schema 38).

Noch überraschender jedoch verlief der Iminierungsversuch mit dem Benzylderivat 170. Nach 14stündiger Reaktionsdauer bei Raumtemp. und alkalischer Aufarbeitung zeigte das Dünnschichtchromatogramm neben unverbrauchtem Ausgangsmaterial ein unpolareres (R_F = 0.83, EE/P = 1:1) und zwei polare Reaktionsprodukte ($R_F = 0.18$ bzw. $R_F = 0.12$) an, wobei das erstgenannte etwa 20% des Rohproduktes ausmacht und sich durch einen Geruch nach Benzaldehyd und Toluol auszeichnet. Die Substanz mit $R_F = 0.18$ erwies sich nach spektroskopischer Untersuchung als enantiomerenreines (S,S)-141 ($[\alpha]_{D}^{20} = +318$ (c = 1.0, Aceton) und wurde mit 34% Ausbeute isoliert, während die polarste Komponente des Gemisches als das ebenfalls bereits bekannte (s. Schema 36) Monosulfoximid 166 ($[\alpha]^{20}_{D}$ = +189.1, c = 1.10, Aceton) identifiziert werden konnte. Als besonders bemerkenswert muß dabei die Tatsache angesehen werden, daß die Reduktion von 170 zu 141 unter vollständiger Retention der Konfiguration am ehemaligen Sulfoximidschwefel verlaufen ist. Dies legt die Vermutung nahe, daß der zu 141 führende Reaktionsschritt in einem sigmatropen Prozeß besteht (Schema 38). Eingeleitet würde dann die Reaktionssequenz durch einen Angriff des MSH auf die S=N-"Doppelbindung" im Sulfoximid 170, welches zu dem, formal einer Nitrenaddition entsprechenden, Thiadiaziridin-S-Oxid 172 führt. Dieses geht im Sinne einer [2+1]-Cycloreversion in (S,S)-141 und N-Benzyldiimid 173 über, welches unter Stickstoffextrusion in Benzyl- und Wasserstoffradikale zerfällt⁷²). Das durch Abstraktion eines H-Atoms aus dem Ausgangsmaterial 170 erzeugte Radikal 174 wird durch den Luftsauerstoff zum Hydroperoxid 175 oxidiert, welches nach Reduktion (möglicherweise unter Mitwirkung der in 170 vorhandenen Sulfinylgruppe) und Hydrolyse das beobachtete Monosulfoximid 166 und Benzaldehyd liefert. Letzterer reagiert dann mit überschüssigem MSH zum O-Mesitylensulfonylbenzaldoxim 173^{66a)}, welches sich durch ein Signal bei $\delta = 8.1$ ppm im Protonenresonanzspektrum der oben erwähn-

MSH

Aus diesem Grunde versuchte man, über die N-geschützten Monosulfoximide 170 und 167 zum

das methylenverbrückte Bissulfoxid 141, das sich bei Raumtemp. gegenüber MSH völlig

analog verhält und in 79% Ausbeute das durch spektroskopische Daten und eine

Elementaranalyse vollständig charakterisierte Monosulfoximid 152 liefert, während bei 60 °C

in Benzol infolge der Abwesenheit β-ständiger Protonen keine Eliminierung, sondern lediglich

60°C/PhH

Zersetzung

0

Zersetzung beobachtet wird (Schema 36).

0

pToh

Schema 36

0

ten unpolaren Komponente des Reaktionsgemisches zu erkennen gibt⁷¹⁾. Die stereo-

spezifisch unter Retention der Konfiguration verlaufende Hydrazinolyse von *N*-Phthalimidosulfoximiden **177**⁷⁴⁾ zu den entsprechenden optisch aktiven Sulfoxiden **179** läßt sich als Hinweis auf Richtigkeit des oben erläuterten Mechanismus' deuten (Schema 39). Auch hier scheint die Konservierung der *S*-Chiralität die Folge einer [2.1]-Cycloreversion zu sein, wobei mit **178** eine dem Thiadiaziridin-*S*-oxid **172** ents^prechende Zwischenstufe durchlaufen wird.

Angesichts dieser experimentellen Befunde sah man sich gezwungen, die Undurchführbarkeit der direkten Iminierung mit MSH als Tatsache hinzunehmen und wandte sich Verfahren zu, die nach dem eigentlichen Iminierungsschritt noch eine Schutzgruppenoperation benötigen.

F 3.2 Iminierung und nachfolgende Deblockierung

Ein Beispiel für eine solche Reaktion ist die klassische, zu *N*-Toluolsulfonyl-Sulfoximiden **156** führende Sulfoximidsynthese von *Kwart* und *Kahn*^{65a}, die, wie Untersuchungen von *Cram* et al.^{65c} gezeigt haben, unter Retention der Konfiguration verläuft (vergl. Abschnitt **F 3**, Schema 33). Problematisch ist jedoch die Entfernung der Tosylgruppe, die mit konz. Schwefelsäure oft nur unter erheblicher Zersetzung und Racemisierung zu erreichen ist⁵⁸. Die Reaktion von **141** mit *p*-Toluolsulfonylazid in Gegenwart von Raney-Kupfer ergab nach 18stündigem Erhitzen in Methanol unter Rückfluß⁷⁵ in 19% Ausbeute ein farbloses Öl, dessen ¹H-NMR-Spektrum bei $\delta = 4.85$ ppm die Signale eines

-51-

AB-Spinsystems aufweist (Schema 40). Die Enantiotopie der Protonen in der Methylenbrücke ist also aufgehoben, welches im Zusammenhang mit der Gesamtzahl von zwölf Aromatenprotonen das Reaktionsprodukt als das *N*-Toluolsulfonylmonosulfoximid **180** ausweist.

Im ¹³C-NMR-Spektrum erscheint der Brückenkohlenstoff mit $\delta = 81.5$ ppm um 2.2 ppm gegenüber dem entsprechenden C-Atom in 141 zu höherem Feld verschoben. Die im ¹H-NMR-Spektrum zu beobachtende, mit steigender Oxidationszahl an den Schwefelatomen zunehmende Tieffeldverschiebung der Methylenprotonen tritt also für das entsprechende Kohlenstoffatom nicht ein. Auch mit dieser, möglicherweise über nitrenoide Intermediate verlaufenden⁶⁵⁾ Iminierungsreaktion bleibt die Umsetzung auf der Stufe des Monosulfoximids 180 stehen. Daher wandte man sich der letzten, stereospezifisch verlaufenden Sulfoximidsynthese zu, die unter Verwendung von N-Aminophtalimid^{74.76} (vergl. Abschnitt **F 1**, Schema 33) zu N-Pththalimidosulfoximiden 157 führt. Dazu setzte man das Bissulfoxid 141 mit dem Phthalimid und Blei(IV)-acetat in Chloroform um (Schema 40), wobei dünnschichtchromatographisch bereits nach 5 min kein Ausgangsmaterial 141 mehr nachweisbar war. Nach weiteren 25 min wurde aufgearbeitet und säulenchromatographisch gereinigt. Dabei isolierte man ein Gemisch aus dem gewünschten Bissulfoximid 181 und dem Monosulfoximid 182, das vom schwerlöslichen 181 durch Extraktion mit siedendem Ethanol abgetrennt wurde (Ausbeute an 181: 23%). Sowohl im ¹H-NMR-Spektrum, als auch im ¹³C-NMR-Spektrum von 181 ist der Signalsatz für die p-Toluolsulfonylgruppen nur einfach vorhanden. Darüberhinaus beobachtet man in der Protonenresonanz für die Methylenprotonen ein A2-Spinsystem, wie es die C2-Symmetrie von 181 fordert. Im FAB-Massenspektrum (Nitrobenzylalkohol) beobachtet man neben dem [M+1]⁺-Signal

bei m/e = 613 dasjenige des Monosulfoximids **182** (m/e = 453) und des Bissulfoxids **141** (m/e = 292). Eine der Summenformel entsprechende Elementaranalyse steht im Einklang mit der so für **181** ermittelten Struktur. Da im Reaktionsgemisch außer **182** keine weitere Substanz mit diastereotopen Brückenprotonen nachgewiesen werden konnte, ging man von der Diasteromerenreinheit von **181** aus. Nachdem es als nun gelungen war, ein Methylenbis(sulfoximid) herzustellen, synthetisierte man das Modellsystem **183**, um Bedingungen zur Entfernung der Phthalimido-Gruppe ausfindig zu machen (Schema 41).

Das Sulfoximid **183** wurde dabei ausgehend vom Sulfoxid **142** mit *N*-Aminophthalimid in Gegenwart von Bleitetraacetat in 68% Ausbeute als kristalliner Festkörper erhalten. Im ¹H-NMR-Spektrum erscheint die an das Sulfoximid-Schwefelatom gebundene Methylgruppe bei $\delta = 3.45$ ppm und ist damit gegenüber der entsprechenden Methylgruppe in **142** um 0.8 ppm zu tieferem Feld verschoben. Daneben beobachtet man die für Sulfoximide charakteristische hohe Verschiebungsdifferenz zwischen *o*-und *m*-Protonen im *p*-Tolylteil von ca. 0.7 ppm. Die Aromatenprotonen im Phthalimidrest bilden ein AA'BB'- Spinsystem, das mit Hilfe einer Spektrensimulation (LAOCOON III⁷⁷⁾) analysiert werden konnte (Abb.3). Darüberhinaus ist die Struktur von **183** durch ein ¹³C-NMR-Spektrum und seine Bruttozusammensetzung durch eine korrekte Elementaranalyse gesichert.

In Anlehnung an Arbeiten von *D.J. Cram*⁷⁸⁾ und *G.D. Daves*⁷⁹⁾, denen hydrogenolytische Spaltungen von N-N-Bindungen in Hydrazinderivaten gelangen, versuchte man, das *N*-Phthalimidosulfoximid **183** mit PtO₂ als Katalysator zu hydrieren. Leider konnte sowohl mit Ethanol als auch mit Eisessig als Lösungsmittel keine Umsetzung beobachtet werden. Auch ein Wechsel des Katalysators (Pd/C) sowie die Anwendung hoher Drücke (bis 100 bar) brachte keinen Erfolg. Stets gewann man das Ausgangsmaterial nahezu quantitativ wieder zurück. Lediglich die Verwendung

von Zink in 10% Salzsäure führte zu einem übelriechenden Produktgemisch, dessen dünnschichtchromatographische Analyse allerdings keinen Hinwies auf eventuell entstandenes Sulfoximid **168** ergab. Auch ionische Hydrogenolysen mit Triethylsilan/Trifluoressigsäure⁸⁰⁾ sowie Versuche zur oxidativen Spaltung mit Brom oder Chlor führten zu keinem Ergebnis, so daß man trotz der gelungenen Synthese des Methylenbissulfoximids **181** auch diese Route aufgeben mußte und man sich gezwungen sah, Weg A im Retrosyntheseschema 27 einzuschlagen.

F 3.3 Kupplung zweier S(VI)-Fragmente

Dabei sollte zunächst auf bekannte Weise, ausgehend vom optisch aktiven Sulfoxid **142**, über das Sulfoximid **168** das enantiomerenreine, geschützte Sulfoximid **184** hergestellt werden und dann mit einem geeigneten Schwefel(VI)-Elektrophil zum geschütztem Bissulfoximid (*S*,*S*)-**191** gekuppelt werden (Schema 42).

Dabei erschien es aus analytischen Gründen sinnvoll, für beide Komponenten die

gleiche Schutzgruppe zu wählen ($PG^1 = PG^2$), um so aus der Isochronie der enantiotopen Methylenprotonen in (*S*,*S*)-**191** auf die Gleichsinnigkeit der Chiralität der beiden Schwefelzentren schließen zu können. Im Falle von $PG^1 \neq PG^2$ wären die
Protonen in **191** unabhängig von der relativen Konfiguration stets diastereotop und damit analytisch wertlos.

Darüberhinaus schränkt der Schlüsselschritt der Reaktionssequenz, die Kupplung zum Bissulfoximid, die Wahl der Schutzgruppe weiter ein. Arbeiten von *Johnson* et al.⁵⁹⁾ zeigen eine starke Sensibilität der Reaktion von Sulfonimidoylfluoriden und Sulfonimidoaten mit Kohlenstoffnukleophilen von den sterischen Gegebenheiten an den Reaktionskomponenten, so daß es angezeigt war eine sterisch "unauffällige" Schutzgruppe zu verwenden. Im Zusammenhang mit der Tatsache, daß *Johnson*⁵⁹⁾ nur *N*-Alkylsulfonimidoylfluoride studiert hatte, lag es nahe, für PG die Allylgruppe zu verwenden, wie sie von *E.J.Corey*⁸¹⁾ zur reversiblen Blockade von Alkoholen eingeführt wurde.

A. *Marquett* et al.⁸²⁾ konnten darüberhinaus ihre Eignung als Schutzgruppe für Stickstofffunktionen in einer Biotin-Synthese zeigen, wobei die Deblockierung nach Rh-katalysierter Verschiebung der Doppelbindung zum Enamin und nachfolgender Hydrolyse mit methanolischem Chlorwasserstoff gelang. Wie Schema 42 zu entnehmen ist, sollten sich in Analogie zu den Arbeiten von *Johnson*^{59,83)} ausgehend vom Sulfonimidoylchlorid **186**, entweder das racemische Sulfonimidoylfluorid **187** oder die potentiell trennbaren diastereomeren, Menthylsulfonimidoate **188** und **189** herstellen lassen. Letztere entsprechen formal dem zur Synthese optisch aktiver Sulfoxide eingesetzten Menthylester **38**. Tatsächlich konnten *Cram* et al.⁸⁴⁾ zeigen, daß zumindest im Falle des Esters **193** die Reaktion mit einem Kohlenstoffnukleophil unter 88% Inversion (40% Ausbeute) der Konfiguration verläuft.

Falls es also gelingt, **189** frei vom Diastereomeren **188** zu synthetisieren, sollte die Reaktion mit **190** unter Inversion das gewünschte Zielmolekül ergeben, während die Umsetzung mit dem racemischen Fluorid **187** lediglich zu einem Gemisch der beiden Diastereomeren (*S*,*S*)-**191** und *meso*-**191** führt.

Zur Verwirklichung dieses Syntheseplanes synthetisierte man also zunächst gemäß Schema 43 aus dem Sulfoximid **168** das geschützte Sulfoximid **192**, wobei die Verwendung von Kalium*tert*-butylat (KTB) als Base für das Erreichen hoher Ausbeuten unbedingt erforderlich ist. Mit NaH konnten nach 15 h Reaktionsdauer nur 2% **192** isoliert werden, während die Reaktion über das Kaliumsalz bereits nach 3 h zu 89% abgelaufen war.

Die für Sulfoximide charakteristische Tieffeldverschiebung der S-Methyl-Gruppe ($\delta = 3.1$ ppm) und die mit 0.5 ppm große Verschiebungsdifferenz der *m*- und *o*-Protonen im Aromatenteil weisen im Zusammenhang mit einer passenden Elementaranalyse **192** als

das oben formulierte N-Allylsulfoximid aus.

Zur Synthese des geschützten Sulfonimidoylfluorides **195** bzw. der Sulfonimidoate **196AB**³²⁾ (Schema 44) setzte man das racemische *N*-Allylsulfinamid **193** zunächst mit *tert*-Butylhypochlorit in Tetrachlormethan um⁸³⁾. Das auf diese Weise gemäß ¹H-NMR-spektroskopischer Analyse quantitativ entstandene Chlorid **194** wurde dann mit Kaliumfluorid⁵⁹⁾ in Acetonitril nahezu quantitativ in das Sulfonimidoylfluorid **195** überführt (83% Ausbeute bez. auf Allylamin). Auch im Falle dieser Verbindung beobachtet man wie in den bereits beschriebenen Sulfonimidoylderivaten die mit 0.65 ppm charakteristisch hohe Verschiebungsdifferenz der *o*und der *m*- Protonen im Aromaten. Darüberhinaus konnte durch Doppel- und Tripelresonanzexperimente eine ⁴J_{HF}-Kopplung von 8.0 Hz und damit das Vorliegen einer fluorierten Verbindung nachgewiesen werden. Eine Molmassenbestimmung mittels hochaufgelöster Massenspektroskopie rundet den Strukturbeweis ab.

Alle Versuche, aus dem Chlorid 194 die diastereomeren Menthylester 196AB zu syn-

thetisieren, scheiterten. Weder die von *Johnson* et al.⁸³⁾ angegebenen Reaktionsbedingungen, noch der Versuch, **194** mit (-)-Menthol in Pyridin zur Reaktion zu bringen, führte zur Bildung der Ester **196AB**, so daß man auf das racemische Fluorid **195** als Elektrophil angewiesen war. Setzt man dieses unter den zur Synthese des Bissulfoxides **141** und des Sulfinylsulfoximides **170** optimierten Kupplungsbedingungen (s. Abschnitt **F 1**) mit dem metallierten Sulfoximid **192** bei -20 °C um, erhält man nach mehrfacher säulenchromatographischer Reinigung in 19% Ausbeute eine ölige Verbindung, die nach 300-MHz-¹H-NMR-Spektrum aus einem 53 : 47-Gemisch des optisch aktiven Bissulfoximids (*S*,*S*)-**197** und seiner *meso*-Form besteht (Schema 45). Deutlich erkennbar ist das, das inaktive *meso*-Diastereomer

(S,R)-197 anzeigende AB-Spinsystem mit $v_A = 4,89$ ppm und $v_B = 4.61$ ppm ($J_{AB} = 14,7$ Hz), während die für die optisch aktive Form 197 charakteristischen enantiotopen Protonen bei $\delta =$ 4.82 ppm als Singulett absorbieren. Gleichzeitig weist die starke Tieffeldverschiebung der Methylenprotonen in 197 auf die geminale Disubstitution durch zwei hexavalente Schwefelatome hin. Im Massenspektrum (CI, Isobutan) erscheint [M+1]⁺ als Basispeak, der im Zusammenhang mit einer von 197 erhaltenen, der Summenformel entsprechenden Elementaranalyse die Richtigkeit der angegebenen Struktur beweist. Da die beiden Diastereome (*S*,*S*)-197 und *meso*-197 chromatographisch nicht trennbar waren, plante man, diese Operation erst nach der ohnehin notwendigen Deblockierung zum polareren Bissulfoximid 134 durchzuführen (Schema 45).

Leider gelang weder unter den von *E.J. Corey* et al.⁸¹⁾ noch unter den von *A. Marquett*⁸²⁾ angegebenen Reaktionsbedingungen die Deblockierung zum freien

Sulfoximid. Stets wurde das Ausgangsmaterial nahezu quantitativ zurückgewonnen.

Mit dem Scheitern dieser Versuche waren alle Möglichkeiten, durch eine Sequenz von stereoselektiven Reaktionen zum methylenverbrückten Bissulfoximid **134** oder zu der Dimethylverbindung **135** zu gelangen, ausgeschöpft, Dabei konnten mit **197** und **181** zwar erstmals geminale Bissulfoximide synthetisiert werden; im Falle von **181** sogar in diastereomeren- und enantiomerenreiner Form, jedoch gelang es nicht, sie zu den entsprechenden freien Sulfoximiden zu deblockieren. Angesichts dieser Tatsachen sah man sich gezwungen, einen alternativen Liganden zu entwerfen.

F 4 Synthese von 200

Angeregt durch den Schlüsselschritt bei der Synthese des zur asymmetrischen Hydrierung eingesetzten chiralen Liganden diPAMP⁸⁵⁾ - die oxidative Dimerisierung eines α -metallierten Phosphinoxids - plante man die entsprechende Kupplung des geschützten Sulfoximids **201** zum ethanoverbrückten Bisulfoximid **203**. Dieses sollte dann nach Entfernung der Schutzgruppe den freien Liganden **200** liefern (Schema 46).

Während durch Kupfer(II)-Salze bewirkte Dimerisierungen, sowohl von Phosphinoxiden als auch von Sulfoxiden literaturbekannt^{85,86)} sind, wurden solche Umsetzungen von metallierten Sulfoximiden bisher nicht beschrieben. Da darüberhinaus die von *Mislow* et al.⁸⁶⁾ durchgeführte Kupplung von (+)-**142** nur 25% Ausbeute an reinem Dimeren ergab, entschloß man sich, analog den Experimenten von *Whitesides* und *Kauffmann*⁸⁷⁾, zunächst mit Kupfer(I)-chlorid das Cuprat zu generieren und dieses dann mit Sauerstoff oxidativ zu kuppeln.

F 4.1 Oxidative Kupplung von 201

Als Schutzgruppe wählte man die *tert*-Butyloxycarbonyl-(BOC) Gruppe, da sie unter den Deprotonierungsbedingungen stabil und leicht wieder zu entfernen sein sollte⁸⁸⁾. Die Synthese von **201** gelang ausgehend vom Sulfoxid **142** in einer Gesamtausbeute von 84% (Schema 46). Abweichend von den zur Einführung einer BOC-Schutzgruppe üblichen Reaktionsbedingungen⁸⁸⁾, führt hier nur die Deprotonierung des intermediär erzeugten Sulfoximids **168** mit Kalium-*tert*-butylat (KTB), gefolgt von einem Überschuß an Di-*tert*-butyldicarbonat [(BOC)₂O)] zu hohen Ausbeuten an **201**, dessen Struktur sowohl durch spektroskopische Daten, als auch einer korrekten Elementaranalyse belegt ist.

Zur Kupplung wurde **201** zunächst bei -78 °C mit 1.1 Äquiv. Lithiumhexamethyldisilazan (LHMDS) deprotoniert, nach 30 min mit 2 Äquiv. Kupfer(I)-chlorid versetzt, nach weiteren 30 min das Schutzgas abgepumpt und durch Sauerstoff ersetzt. Nach ammoniakalischer Aufarbeitung und säulenchromatographischer Reinigung isolierte man drei neue optisch aktive Substanzen, deren Struktur aufgeklärt werden konnte. Im IR-Spektrum der unpolarsten Komponente beobachtet man eine breite Absorption bei 3170 cm-¹, welches auf das Vorliegen einer NH-Gruppe hindeutet. Im Protonenspektrum erkennt man die Anwesenheit einer *tert*-Butyl- sowie einer *p*-Toluolsulfinyl-Gruppe. Die Oxidationsstufe IV am Schwefel läßt sich hier, entsprechend den bereits erläuterten Fällen (vergl. Abschnitt **F 3.3**), aus der mit $\Delta \delta_{o,m} = 0.25$ ppm vergleichsweise geringen Verschiebungsdifferenz zwischen *m*- und *o*-Protonen des Aromaten ablesen. Das mit D₂O austauschbare NH-Proton

-61-

erscheint stark tieffeldverschoben bei $\delta = 7.07$ ppm und weist sich damit als acylsubstituiert aus. Mit diesen Informationen gelangt man zum Strukturvorschlag eines N-BOC-Toluolsulfinsäureamides **204** ($[\alpha]_{D}^{20} = -102.8$, c = 1.1, Aceton, Ausbeute 20%) der auch durch das ¹³C-NMR bestätigt wird. Eine der Summenformel entsprechende Elementaranalyse rundet den Strukturbeweis ab. Im ¹H-NMR-Spektrum der mittleren Fraktion erkennt man eine N-tert-Butyloxy-p-toluolsulfonimidoyleinheit ($\Delta \delta_{o,m} = 0.50$ ppm), die an ein olefinisches System gebunden ist. Die Multiplizität der zwischen $\delta = 6.10$ ppm und $\delta = 6.74$ ppm erscheinenden Signale (3 Protonen; jeweils dd) ist charakteristisch für das Vorliegen einer Vinylgruppe, woraus sich Struktur 205 ableiten läßt (Ausbeute 12%). Diese wird darüberhinaus durch ein ¹³C-NMR-Spektrum und ein hochaufgelöstes Massenspektrum (CI, Isobutan) bestätigt, Die polarste Komponente schließlich erwies sich laut ¹H-NMR-Spektrum als ein 87:13-Gemisch einer neuen Verbindung mit unverändertem Ausgangsmaterial 201. Charakteristisch ist das Auftreten eines komplizierten, aus 20 Linien bestehenden Signals mit einer vier Protonen entsprechenden Intensität bei $\delta = 3.65$ ppm, wie man es für das AA'BB'-Spinsystem im Ethylenbissulfoximid 203 erwartet. Tatsächlich gelang es mit Hilfe des LAOCOON-III-Programms⁷⁷⁾, dieses Spinsystem als solches zu identifizieren und alle spektralen Parameter zu ermitteln (Abb. 4).

Im ¹³C-NMR des Bissulfoximids **203** erkennt man nur einen Signalsatz für die durch eine C₂-Symmetrieoperation ineinander überführbaren Molekülteile, wobei die Kohlenstoffatome der Ethanobrücke bei $\delta = 49.9$ ppm absorbieren. Im FAB-Massenspektrum (3-Nitrobenzylalkohol) erscheint der [M+1]⁺-Peak mit einer Intensität von 20% und der [2M+1]⁺-Peak bei m/e = 1073 mit einer solchen von 2%. Auch von **203** wurde eine korrekte Elementaranalyse erhalten (Die Reinigung des Produktes erfolgte durch Säulenchromatographie an Kieselgel).

Die Bildung des *N*-Acylsulfinamids **204** und des Vinylsulfoximids **205** kann dabei, wie in Schema 46 formuliert, als die Folge einer säure- oder basekatalysierten Redoxreaktion angesehen werden. Bemerkenswert ist die Konservierung der *S*-Chiralität beider Schwefelatome aus **203** in den beiden optisch aktiven Folgeprodukten **204** und **205**. Mit dem vorgestellten Verfahren war **203** zwar prinzipiell zugänglich, die mit ca. 30% schlechte Ausbeute und die problematische Abtrennung des Ausgangsmaterials **201** jedoch machte die Suche nach einem effizienteren Verfahren notwendig, Dazu prüfte man die Anwendbarkeit des zur Kupplung von Phosphinoxiden eingesetzten^{85,86} Kupfer(II)-chlorids für das vorliegende System, indem man lithiiertes **201** in eine auf -78 °C gekühlte Suspension von

1150

1140

1130

1120

1110 1100 1090 1080 HERTZ Experimentelles (a) und berechnetes (b) ¹H-NMR-Spektrum von 203 bei Abb.: 4 300-MHz Meßfrequenz.

1070 1050

1050

1040

Kupfer(ll)-chlorid in THF eintrug (Weg 2 in Schema 46).

-62-

Chirale Liganden

-63-

Dabei löste sich das Salz bereits nach wenigen Minuten praktisch vollständig unter Bildung einer dunkelgrünen, klaren Lösung auf. Zwei Stunden nach dem Aufwärmen auf Raumtemp. zeigte die dünnschichtchromatographische Analyse einen nahezu vollständigen Umsatz an und man isolierte nach ammoniakalischer Aufarbeitung in 99% Ausbeute ein laut ¹H-NMR-Spektrum nur geringfügig verunreinigtes Produkt. Es empfiehlt sich nicht, das Rohprodukt durch Säulenchromatographie oder Kristallisation zu reinigen, da in beiden Fällen erhebliche Verluste durch die bereits erläuterte Eliminierungsreaktion entstehen. Eine dennoch durchgeführte Chromatographie eines größeren Ansatzes führte zur Isolation eines weiteren Nebenproduktes der Reaktion, welches zu etwa 4% im Rohprodukt vorliegt. Im 1H-NMR-Spektrum dieser Verbindung tritt neben den Signalen der N-tert-Butyloxycarbonylsulfonimidoyl-Einheit ($\Delta \delta_{o,m} = 0.50$ ppm) ein um $\delta = 4.96$ ppm zentriertes AB-Spinsystem auf, aus dessen starker Tieffeldverschiebung man auf das Vorliegen einer geminal bisakzeptorsubstituierten Methylengruppe schließen kann, Da die Substanz optisch aktiv ist $([\alpha]^{20}_{D} = +13.8)$, kann es sich nicht um *meso*-**206** handeln (Schema 47). Optisch aktives (*S*,*S*)-206 scheidet ebenfalls aus, da hier die Methylenprotonen enantiotop und damit isochron sind. Setzt man alle aus ¹H- und ¹³C-NMR-Daten ermittelbaren Atomgruppen zusammen, gelangt man zum Fragment 207, wobei X ein entschirmender Substituent sein muß.

Da nun im FAB-Massenspektrum (3-Nitrobenzylalkohol) das $[M+1]^+$ -Signal bei m/e = 304 liegt und die aus den NMR-Daten gewonnenen Molekülfragmente dazu bereits einen Beitrag von **268** mu liefern, muß es sich bei der neuen Verbindung um das Chlormethylsulfoximid **208** handeln, welches offensichtlich das Produkt einer oxidativen

Chlorierung von lithiiertem **201** durch Kupferchlorid ist⁸⁹ (Schema 47). Neben dem Massenspektrum bestätigt auch eine passende Elementaranalyse die Bruttozusammensetzung von **208**.

Trotz dieses, das Hauptprodukt stets in Konzentrationen um 5% begleitenden Nebenproduktes steht mit der durch Kupfer(II)-chlorid bewirkten oxidativen Dimerisierung ein unproblematischer Weg zum geschützten Bissulfoximid **203** zur Verfügung,

F 4.2 Zur Kupplung alternativer Sulfoximide

Um die durch die Anwesenheit β -ständiger Protonen bewirkte Eliminierungsneigung des Bissulfoximids auszuschalten, lag es nahe, die entsprechende permethylierte Verbindung **212** zu synthetisieren (Schema 48).

Zwar gelang es, das Isopropylderivat **211** gemäß der im Schema 48 angedeuteten Reaktionssequenz über das Sulfoximid **210**⁵⁸⁾ mit einer Gesamtausbeute von 72%

herzustellen und durch spektroskopische Daten sowie einer Elementaranalyse vollständig zu charakterisieren, doch die geplante Kupplung unter den für **203** optimierten Bedingungen ließ sich nicht realisieren. Statt des gewünschten Dimeren erhielt man **211** nahezu quantitativ zurück. Offensichtlich verhindert die durch die Methylgruppen ausgeübte sterische Hinderung die zur Bindungsknüpfung erforderliche Annäherung der Reaktanden. Ebenso erfolglos verlief der Versuch, das *N*-silylierte Sulfoximid **213** (s. Abschnitt **F 6**) oxidativ zu dimerisieren, welches durch die äußerst leichte Abspaltbarkeit der Schutzgruppe einen besonders eleganten Zugriff auf das freie, ethanoverbrückte Bissulfoximid **200** bedeutet hätte.

F 4.3 Deblockierung von 203

Um zum freien Bissulfoximid **200** zu gelangen, prüfte man zunächst an den Testsystemen **201** und **211** die Übertragbarkeit der sauren Deblockierung von BOC-Derivaten mittels Trifluoressigsäure (TFA)⁹⁰⁾ und Aluminiumchlorid/Anisol⁹¹⁾ auf *N*-BOC-geschützte Sulfoximide (Schema 49). Darüberhinaus wurde auch die

Möglichkeit eines Ersatzes des Aluminiumchlorids gegen Titantetrachlorid geprüft

-67-

Chirale Liganden

(vergl. auch Abschnitt F 6 und G 2.2).

F 4.3.1 Mit Trifluoressigsäure

Um sicher zu sein, daß die trifluoressigsauren Bedingungen nicht zur Racemisierung führen, setzte man das Sulfoximid **201** zunächst mit TFA bei Raumtemp. zu **168** um, dessen Drehwert literaturbekannt ist⁵⁸ (Schema 49).

Man isolierte nach Säulenchromatographie 77% des enantiomerenreinen Sulfoximids **168** ($[\alpha]^{20}_{D} = -36.0$, c = 1.07, Aceton; Lit.⁵⁸): -31.9, c = 3.0, Aceton; Lit.^{65c}): -32.4, c = 0.89, Aceton), womit gleichzeitig gezeigt war, daß auch das entwickelte Verfahren zur Einführung der BOC-Schutzgruppe mit KTB und BOC-Anhydrid [(BOC)₂O)] racemisierungsfrei verläuft. Durch diesen Befund ermutigt, wandte man diese Reaktionsbedingungen auf das Bissulfoximid **203** an (Schema 50), wobei man durch die Herabsetzung der Reaktionstemperatur auf 0 °C einer befürchteten Eliminierung (s.o.) vorbeugen wollte.

Tatsächlich isolierte man nach einmaliger Kristallisation aus Ethanol mit 74%

Ausbeute das leicht verunreinigte, deblockierte Sulfoximid **200**. Durch Säulenchromatographie der Mutterlauge gelang es, 5.5% des "freien" Vinylsulfoximids **215** und 2.0% des bereits bekannten, BOC-geschützten Vinylsulfoximids **205** zu isolieren. **215** wurde durch ¹H- und ¹³C-NMR-Daten sowie durch ein hochaufgelöstes Massenspektrum (CI, Isobutan) vollständig charakterisiert. Ferner gelang es, durch chromatographische Reinigung der Mutterlauge einer Rekristallisation des zunächst erhaltenen, leicht verunreinigten Hauptproduktes **200** eine Substanz zu isolieren, deren 60-MHz-¹H-NMR-Spektrum mit der Struktur des teildeblockierten Sulfoximids **214** in Einklang ist. Aus dem gleichzeitigen Auftreten des noch BOC-geschützten Eliminierungsproduktes **205** und des nur teilentschützten Bissulfoximids **214** erkennt man die Schwierigkeit der Trifluoracetolyse (Schema 50). Die unerwünschte Eliminierung konkurriert zu einem gewissen Grad erfolgreich mit der Abspaltung der Schutzgruppe. Diese Tatsache löste die Suche nach einer milderen Methode zur Gewinnung von **200** aus.

F 4.3.2 Mit Aluminiumchlorid/Anisol

Arbeiten von *T.Tsuji*²¹ haben gezeigt, daß *tert*-Butyloxycarbonylgruppen auch unter *Friedel-Crafts*-Bedingungen abspaltbar sind. Auch hier wurde zunächst am Modellsystem **211** die Übertragbarkeit der Methode auf *N*-BOC-geschützte Sulfoximide und der epimerisierungsfreie Verlauf der Reaktion überprüft (Schema 49). Dazu legte man **211** und Anisol bei 0 °C vor und tropfte eine Lösung von 3 Äquivalenten Aluminiumchlorid in Nitromethan hinzu. Bereits nach 5 min war dünnschichtchromatographisch kein Ausgangsmaterial mehr nachweisbar und man isolierte nach Aufarbeitung und Chromatographie in 94% Ausbeute das Sulfoximid **210** in enantiomerenreiner Form ($[\alpha]^{20}_{D} = -17.2$, c = 1.24, Aceton; Lit.⁵⁸): -17.1, c = 1.01, Aceton). Die Übertragung auf **203** ergab mit 70% Ausbeute das freie Bissulfoximid **200**; das Eliminierungsprodukt **215** (s. Schema 50) tritt erst nach thermischer Beanspruchung des Systems durch die Umkristallisation aus Ethanol auf. Wie im Falle des geschützten Derivates **203** gelang auch für **200** die Analyse des im ¹H-NMR-Spektrum zu beobachtenden AA'BB'-Spinsystems mit Hilfe des Programms LAOCOON III⁷⁷¹ (Abb. 5).

Ein mit der Struktur in Einklang stehendes ¹³C-NMR-Spektrum sowie eine korrekte Elementaranalyse lassen in Verbindung mit einem FAB-Massenspektrum (3-Nitrobenzylalkohol; m/e = 337 M+1]⁺ 40%; m/e = 673 [2M+1⁺ 2.5%) keinen Zweifel an der angegebenen Struktur **200**. Geht man von ungereinigtem **203** aus, gelingt die Synthese von **200** in 50-60% Ausbeute über beide Stufen, wobei das Produkt erwartungsgemäß mit 3% des sich von **208** ableitenden Chlorides **220** verunreinigt ist (Schema 51).

-71-

Diese Vorgehensweise ist wegen der Empfindlichkeit der Verbindung zu empfehlen. Auch dieses Nebenprodukt konnte in reiner Form isoliert und sowohl NMR-spektroskopisch als auch durch eine passende C,H-Analyse charakterisiert werden. Auffällig im ¹H-NMR-Spektrum von **220** ist die extrem starke Kopplung der Protonen des AB-Spinsystems, wodurch die äußeren Linien f_1 und f_4 nur noch ca. 4% der Intensität der zentralen Linien f_2 und f_3 aufweisen (Abb. 6).

F 5 Synthese des tridentalen Liganden 238

Um dem zu Beginn des Abschnitts formulierten "idealen Liganden" möglichst nahe zu kommen, plante man die Synthese des dreizähnigen Hydroxysulfoximids **216** (Schema 52). Ungleich den bislang beschriebenen bidentalen Liganden verbleibt hier im entsprechenden Titanreagenz **221** nur eine Ti-Cl-Bindung zur Bindung des Kohlenstoffnukleophils. Dadurch umgeht man im Transmetallierungsschritt eine mögliche Mehrfachsubstitution am Metallzentrum. Zur Realisierung des Projektes führte man zunächst die in Schema 52 gezeigte retrosynthetische Analyse durch. Die aufgezeigten Wege unterscheiden sich dabei lediglich durch die Oxidationsstufe des eingesetzten C₁-Bausteins und der erwarteten Reaktivität des metallierten Sulfoximids **217** gegenüber Estern als Elektrophilen. Im Interesse einer möglichst effizienten Synthese prüfte man zunächst die, ausgehend von **217**, einstufige Variante ①.

F 5.1 Verwendung von Ethylformiat als C1-Baustein

Dazu deprotonierte man das Methylsulfoximid **201** mit Lithiumhexamethyldisilazan (LHMDS) bei -78 °C, versetzte nach 30 min mit 1.1 Äquiv. Ethylformiat, rührte zunächst 30 min bei dieser Temperatur, dann 16 h bei RT nach und arbeitete wäßrig auf (Schema 53). Dabei konnte jedoch nur etwa ein Drittel der eingesetzten Menge als Ausgangsmaterial zurückgewonnen werden. Eventuelle Umsetzungsprodukte gelangen, bis auf eine ca. 9% des Rohproduktes ausmachende Verbindung, offensichtlich in die wäßrige Phase und können somit nicht die gewünschte Struktur aufweisen. Die ¹H-NMR-spektroskopische Analyse des isolierten Nebenproduktes wies dieses als das bereits bekannte (s.o.) *N-tert*-Butyloxycarbonylsulfinamid **204** aus (s. auch Schema 46).

In der Hoffnung, durch Abschwächung der Reaktivität der aus **201** erzeugten metallorganischen Zwischenstufe dennoch zu einer erfolgreichen Durchführung der Reaktion

zu gelangen, versuchte man durch Anwendung von *tert*-Butylmagnesiumbromid als Base die entsprechende Mg-Verbindung **222** zu generieren (Schema 53).

Tatsächlich konnten in diesem Fall 55% des Ausgangsmaterials zurückgewonnen werden und darüberhinaus die Bildung einer neuen Verbindung beobachtet werden, die laut IR-Spektrum eine hydroxylische OH-Gruppe (v(O-H) = 3370 cm⁻¹), sowie die BOC-Schutzgruppe (v(C=O)=1675 cm⁻¹) enthält. Im 300-MHz-¹H-NMR-Spektrum erkennt man die Anwesenheit einer zweiten *tert*-Butyleinheit, die gegenüber derjenigen der Schutzgruppe zu höherem Feld verschoben ist. Aus diesen Informationen wurde die Struktur des β -Hydroxysulfoximids **225** abgeleitet, welches offensichtlich das Additionsprodukt überschüssigen *tert*-Butylmagnesiumbromids an das Primäraddukt **224** ist. Von **225** wurde eine passende Elementaranalyse angefertigt. Da die Verwendung von Ethylformiat überraschenderweise nicht zum gewünschten Produkt führte, versuchte man durch Verwendung von Dimethylcarbonat und nachfolgender

Reduktion zum Erfolg zu gelangen (Wege 2 und 3 in Schema 52).

F 5.2. Verwendung von Dimethylcarbonat als C1-Baustein

Zur Verwirklichung dieses Vorhabens metallierte man 201 unter den oben beschriebenen Bedingungen mit LHMDS als Base und versetzte nach 30 min mit 1.5 Äquivalenten Dimethylcarbonat (Schema 54). Die dünnschichtchromatographische Analyse des Rohproduktes zeigte das Auftreten eines einzigen Reaktionsproduktes an. Nach wäßriger Aufarbeitung und säulenchromatographischer Reinigung isolierte man enantiomerenreines Ausgangsmaterial 201 (42%) und in 42% Ausbeute ein neues, optisch aktives Produkt der Struktur 226. Das α -Kohlenstoffatom erscheint im gated-decoupled- ¹³C-NMR-Spektrum erwartungsgemäß als fernkopplungsfreies Triplett bei $\delta = 59.42$ ppm. Im IR-Spektrum beobachtet man das Auftreten zweier Carbonylbanden bei 1740 cm-1 und 1675 cm-1, die den entsprechenden Carbonylgruppen in 226 zugeordnet werden können, womit in Verbindung mit einer korrekten Elementaranalyse 226 zweifelsfrei charakterisiert ist. Aus der Tatsache, daß das β -Oxosulfoximid 226 acider ist als das Ausgangsmaterial 201, ergeben sich zwei wichtige Konsequenzen: Zum einen entspricht die beobachtete Ausbeute von 42% bereits 84% der theoretisch möglichen, da 226 in dem Maße seiner Bildung durch 223 enolisiert wird, zum anderen bedeutet dies, daß die Protonenabstraktion erfolgreich gegen den zum Kupplungsprodukt führenden nukleophilen Angriff an der Carbonylgruppe in 226 konkurriert. Aus diesem Grunde naheliegend ist die Verwendung des α, α -Dimethylsulfoximids 211, da im Primärprodukt 227 (Schema 54) keine aciden Protonen mehr vorhanden sind.

Tatsächlich konnte der Ester 227 als einziges Produkt mit $\ge 95\%$ Ausbeute als farbloses Öl isoliert und durch spektroskopische Daten sowie einer Elementaranalyse charakterisiert werden. Bedauerlicherweise blieb auch hier die Addition der zweiten Sulfoximideinheit zum Keton 228 aus. Die mangelnde Reaktivität von 227 gegenüber lithiiertem 211 ist dabei sicherlich sowohl auf die sterische Überfrachtung des zum Reaktionszentrum α -ständigen Kohlenstoffatoms, als auch auf die unzureichende Elektrophilie der Esterfunktion zurückzuführen. Zur Abschätzung des ersten Faktors studierte man das Verhalten des Lithio-Sulfoxides 150, dessen Raumbeanspruchung durch das Fehlen der *N-tert*-Butyloxycarbonylimino-Gruppe im Vergleich zu 211 sicherlich deutlich geringer ist (Schema 55). Überraschenderweise führte diese Reaktion weder zum erwarteten Ester 230 noch zum

Keton 229. Stattdessen entstand ein unübersichtliches Gemisch aus einer Vielzahl von Substanzen aus dem sich erst durch mehrfache säulenchromatographische Reinigung das Hauptprodukt *meso-*144 (vergl. Abschnitt F 2) mit 44% Ausbeute in einheitlicher Form isolieren ließ. Eine Deutung dieses erstaunlichen Befundes bietet die Annahme eines nukleophilen Angriffs des metallierten Sulfoxides 150 an der Sulfinylgruppe des zunächst entstehenden Esters 230 (Schema 55). Dieses Experiment ist darüberhinaus in zweifacher Hinsicht höchst aufschlußreich: Zunächst macht es deutlich, daß die Elektrophilie der Esterfunktion sowohl im Sulfinylester 230 als auch im Sulfonimidoylester 227 zur Addition eines weiteren stabilisierten Carbanions nicht ausreicht (Schemata 54 und 55). Gleichzeitig erkennt man die Notwendigkeit, metallorganische Reaktionen, die nicht zu einem nukleophilen Angriff auf den Schwefel führen sollen, bevorzugt mit den weniger elektrophilen hexavalenten Schwefelverbindungen durchzuführen (vergl. Abschnitte I 1 und I 5). Als Konsequenz dieser Überlegungen entschloß man sich, die dritte Alternative im Retrosyntheseschema 52 zu realisieren, wobei dem Aldehyd 236 (R = Me) die Rolle

F 5.3 Synthese von 238 über den Aldehyd 236

Die Darstellung des β -Hydroxybissulfoximids **238** sollte gemäß Schema 56 erfolgen. Der Ester **227** (vergl. Abschnitt **F 5.2**, Schema 54) wurde ungereinigt mit 1.5 Äquiv. DIBAH bei -78 °C reduziert, wobei man nach Säulenchromatographie in 53% Ausbeute den gewünschten Aldehyd **236** isolieren konnte. Im 300-MHz-¹H-NMR-Spektrum beobachtet man die Resonanz des Aldehydprotons bei $\delta = 9.65$ ppm, während im *gated-decoupled-*¹³C-NMR-Spektrum das Signal des Carbonylkohlenstoffs der Aldehydgruppe bei $\delta = 194.44$ ppm mit der erwarteten Multiplizität (dqq) auftritt. Eine von **236** erhaltene, der Summenformel entsprechende Elementaranalyse vervollständigt die Charakterisierung. Der nun folgende Schritt, die Kupplung mit dem Isopropylsulfoximid **211**, sollte nun zeigen, daß nicht die zweifellos vorhandene sterische Hinderung der die mangelnde Reaktivität von **227** bestimmende Parameter, sondern vielmehr die im Gegensatz zum Aldehyd **236** ungenügende

Elektrophilie dieser Spezies von ausschlaggebender Bedeutung ist. Tatsächlich wurde nach Deprotonierung von **211** mit *n*-BuLi und Reaktion mit 0.91 Äquivalenten des Aldehyds **236** nach chromatographischer Reinigung mit 84% Ausbeute das analysenreine Hydroxybissulfoximid **238** als glasartiger Festkörper isoliert. Ungleich dem in **F 4** beschriebenen Bissulfoximid **203** findet man sowohl im ¹H- als auch im ¹³C-NMR-Spektrum für jede Dimethylsulfonimidoyleinheit einen getrennten Signalsatz, da hier trotz der C₂-Symmetrie des Moleküls sowohl die Methylgruppen untereinander als auch einander entsprechende Atome bzw. Atomgruppen diastereotop sind. Auffällig im ¹H-NMR-Spektrum vom **238** ist ferner die ausgeprägte Tieffeldverschiebung, die das Proton der Hydroxylgruppe erfährt ($\delta_{OH} = 5.89$ ppm) (Schema 57). Dies läßt sich auf das Vorliegen einer Wasserstoffbrückenbindung zurückführen, wie man sie auch für das β-Hydroxysulfoximid **239** beobachtet ($\delta = 5.90$ ppm). Aus der guten

Chirale Liganden

Übereinstimmung der chemischen Verschiebungen leitet man ferner eine Wechselwirkung der Hydroxygruppe mit dem Sulfoximidsauerstoffatom und nicht mit dem der *tert*-Butyloxycarbonylgruppe ab. Auch die mit $\delta = 4.90$ ppm außergewöhnlich tieffeldverschobene Resonanz des an den Carbinolkohlenstoff gebundenen Methinprotons ist ein Charakteristikum von **238** (Abb. 7)

Ausgehend von kommerziell erhältlichem Menthylester **38** ist **238** somit über eine sechsstufige Synthesesequenz mit einer Gesamtausbeute von ca. 30% erhältlich, wobei zu berücksichtigen ist, daß auf den Stufen des Sulfoximids **210** (vergl. Schema 48) und des Methylesters **227** keine Reinigungsoperationen erforderlich sind. Darüberhinaus ließ sich der Aldehyd **236**, ausgehend von **211**, in 45% Ausbeute auch völlig ohne Isolation von Zwischenprodukten in einer "Eintopfreaktion" herstellen. Hier wurden allerdings 10% des als Folge einer Überrreduktion entstandenen Alkohols **237** isoliert. Seine Struktur ist durch spektroskopische Daten gesichert (Schema 56).

F 5.3.1 Zur Deblockierung von 238

In Anlehnung an die für die Entfernung der BOC-Gruppen im Bissulfoximid **203** bewährten Methoden (Kapitel **F 4.3**) prüfte man Trifluoressigsäure und Aluminiumchlorid/ Anisol (Schema 58).

Die Umsetzungen führten jedoch nur zur völligen Zerstörung des Liganden unter Bildung einer Vielzahl, nicht identifizierter Produkte. In keinem Fall konnte im ¹H-NMR-Spektrum des Rohproduktes die deblockierte Form **240** nachgewiesen werden. Möglicherweise stellt das Kation **241** die den Zerfall einleitende Spezies dar.

Abb.: 7 300-MHz-¹H-NMR- und 75-MHz-¹³C-NMR-Spektren von 238.

F 6 Darstellung der β-Hydroxysulfoximide 246 und 247

Im Hinblick auf die geplante Umsetzung der Liganden mit einem Titanhalogenid zum entsprechenden Titanreagenz, erschien es sinnvoll, die Reaktionszentren in mehrzähnigen Liganden so auszuwählen, daß sie bezüglich ihrer Reaktivität gegenüber dem Halogenid differenziert sind (Schema 59).

Dabei sollte zunächst durch eine vom Titantetrahalogenid leicht zu lösende Y-PG-Bindung in einer schnellen, der Cyclisierung vorgelagerten Reaktion das Intermediat **243** entstehen. Diesem stehen nun prinzipiell zwei Reaktionswege offen, wobei der intermolekulare Weg zum Polymeren **245** und die intramolekulare Variante zum gewünschten cyclischen Monomeren **244** führt. Da beide Alternativen ähnliche Reaktionsenthalpien haben, der intramolekulare Prozeß jedoch entropisch begünstigt ist, sollte die Reaktionssequenz bevorzugt zu **244** führen. Durch eine Donor-Akzeptor-Wechselwirkung zwischen Z und Ti, welche die beiden Reaktionszentren im Sinne der intramolekularen Reaktion präformiert, sollte dieser erwünschte Reaktionsweg zusätzlich gefördert werden. Da die rasche Reaktion zwischen *N*-silylierten Substraten und Übergangsmetallhalogeniden eine bereits seit längerem literaturbekannte Methode zur Darstellung einer großen Anzahl entsprechender Metallkomplexe ist⁹²⁾, bot sich für Y-PG in Schema 59 die Gruppierung =N-SiMe₃ an. Für ZPG wählte man mit Z = O

-81-

Chirale Liganden

und PG = -SiMe₃ eine funktionelle Einheit, die eine gegenüber der =NSiMe₃-Funktion herabgesetzte Reaktivität aufweist. Dabei versprach die Wahl der Trimethylsilylgruppe den Vorteil der leichten Entfernbarkeit des als Nebenprodukt anfallenden Chlortrimethylsilans. Zur Prüfung dieses Konzeptes synthetisierte man die silylierten β -Hydroxysulfoximide **246** und **247** (Schema 60).

Im Falle des *N*-BOC-geschützten Derivates **247** beabsichtigte man die leichte Abspaltbarkeit der *tert*-Butyloxycarbonylgruppe mit Titantetrachlorid unter Bildung der leicht entfernbaren Nebenprodukte *tert*-Butylchorid und CO_2 auszunutzen (vergl. Abschnitt **F 4.3**, Schema 49 und **G 2.2**)

Die Synthese von 247 sollte problemlos aus dem Sulfoximid 211 und Aceton mit nachfolgender *O*-Silylierung möglich sein (Schema 60). Tatsächlich konnte gemäß der im Schema 60 dargestellten Reaktionssequenz das β -Hydroxysulfoximid 247 in 27% Gesamtausbeute ausgehend vom Sulfoximid 211 synthetisiert werden. Auf eine Isolation des Alkohols 248 wurde verzichtet, da die geringe Polaritätsdifferenz gegenüber dem Ausgangsmaterial eine säulenchromatographische Trennung erschwerte und dies für die nachfolgende Silylierung auch nicht erforderlich ist.

Das optisch aktive *O*-Silyl-hydroxysulfoximid **247** ($[\alpha]^{20}_{D} = -78.8$, c = 1.3, Aceton) ist ein leicht von **211** abtrennbarer, kristalliner Festkörper, dessen Struktur durch spektroskopische Daten, sowie einer der Bruttoformel entsprechenden Elementaranalyse gesichert ist. Zur Synthese des *N*-silylierten Sulfoximids **213** (Schema 60) prüfte man zunächst die elegante Einschrittvariante der Iminierung mit Azidotrimethylsilan, die

unmittelbar vom Sulfoxid **142** zum silylierten Sulfoximid **213** führen sollte. Diese Reaktion wurde zur Darstellung von Phosphiniminen entwickelt⁹³⁾ und dort mit großem Erfolg angewendet⁹⁴⁾(Schema 61).

Leider gelang es nicht, diese Ergebnisse auf die vorliegenden schwefelhaltigen Systeme zu übertragen. Da auch der Versuch, photochemisch (unter N₂-Abspaltung) das Nitren Me₃SiN: zu generieren und durch gleichzeitig anwesendes Sulfoxid abzufangen, scheiterte, sah man sich gezwungen, den ebenfalls in Schema 60 gezeigten Weg über die Iminierung von 142 mit MSH zu gehen (vergl. Abschnitt F 3.1). Die nachfolgende Silylierung des Imids **168** mit Diethylaminotrimethylsilan⁹⁵⁾ verläuft quantitativ, so daß 213 ausgehend vom Sulfoxid 142 in Ausbeuten von 85%-95% zugänglich war. Das optisch aktive N-Silylsulfoximid **213** ($[\alpha]_{D}^{20}$ = -77.3, c = 4.2, Dichlormethan) ist eine farblose Flüssigkeit, die unzersetzt und racemisierungsfrei im Vakuum destilliert werden kann. Die vorliegenden spektroskopischen Daten sowie ein hochaufgelöstes Massenspektrum (CI, Methan) belegen die Struktur. Die nachfolgende Deprotonierung mit LDA und Umsetzung mit Aceton liefert in 99% Ausbeute ein - nach Aussage des ¹H-NMR-Spektrums - nur leicht verunreinigtes Rohprodukt, welches ohne weitere Reinigung mit Chlortrimethylsilan zur bissilvlierten Verbindung 246 O-silvliert wurde. Die Verwendung von Dimethylethylamin als Base hat sich dabei zur Gewinnung hydrolyselabiler Verbindungen, wie z.B. von N-Silvlderivaten hervorragend bewährt, da sie wegen ihres niedrigen Siedepunkts (35 °C) ungleich den sonst üblichen Basen (TEA oder Pyridin) im Vakuum leicht entfernt werden kann. Auf eine wäßrige, saure Aufarbeitung kann damit verzichtet werden. Die Reinigung des Rohproduktes gelang durch Kugelrohrdestillation bei 0.001 Torr (140 °C) und ergab 80% geringfügig verunreinigtes 246, während eine rasch ausgeführte Flash-Chromatographie über 140 g Kieselgel (E/P) mit 63% Ausbeute zu einem hochreinen Produkt führt; das IR-Spektrum zeigt die völlige Abwesenheit von NH- oder OH-Gruppen. Im ¹H-NMR-Spektrum erscheinen die Methylenprotonen als stark gekoppeltes AB-Spinsystem bei $\delta = 3.274$ ppm (v_A) und $\delta =$ 3.218 ppm (v_B). Im Massenspektrum (CI, Methan) beobachtet man den $[M+1]^+$ -Peak mit einer Intensität von 29%. Der Basispeak bei m/e = 299 wurde der monodesilylierten Form und der bei m/e = 226 auftretende Peak der vollständig desilylierten Spezies zugeordnet. Eine unter Hochauflösung durchgeführte Analyse des Molpeaks bestätigt die der Struktur des β-Hydroxysulfoximids 246 entsprechende Summenformel. Zur Charakterisierung des durch die Addition von Aceton an das Methylsulfoximid 213 synthetisierten Zwischenproduktes 239 (Schema 60), desilvlierte man dieses mit Methanol/Kaliumcarbonat⁹⁶ zum kristallinen β -Hydroxysulfoximid 249, von dem, neben der Struktur entsprechenden spektroskopischen Daten, eine korrekte Elementaranalyse erhalten werden konnte. Mit den Sulfoximiden 246 und 247, den Bissulfoximiden 200 bzw. 203 (Schema 46) und 238 (Schema 56) standen nun vier chirale Liganden zur Verfügung, deren Einsatz in der asymmetrischen Synthese ihre Überführung in die entsprechenden Titanreagenzien erfordert.

Zur Synthese und Anwendung chiraler Titanreagenzien in der Homoaldol-G reaktion über metallierte 1-Sulfonyl-2-alkenylcarbamate

Seit ihrer Einführung in die organische Synthese durch M.T. $Reetz^{2b,d}$ und D. $Seebach^{2c}$ hat es nicht an Versuchen gefehlt, Organotitanreagenzien asymmetrisch zu modifizieren, um neben der in vielen Fällen beobachteten ausgezeichneten Diastereoselektivität auch eine Kontrolle über die absolute Konfiguration der Produkte zu erreichen. Dabei stehen zum einen asymmetrische Übertragungen von Kohlenstoffnukleophilen auf prochirale Carbonylverbindungen und zum anderen asymmetrische Diels-Alder-Reaktionen⁹⁷⁾ unter Verwendung chiral modifizierter Titanverbindungen im Vordergrund.

G 1 Chiral modifizierte Titanreagenzien zur asymmetrischen Synthese optisch aktiver Alkohole

Ausgangstoffe zur Synthese chiraler Titanregenzien sind in der Regel die bewährten achiralen Reagenzien 250^{33,2b,c,d)} und 126^{98,2b,c,d)} (Schema 62). Dabei gelangt man, ausgehend von 250. unter azeotroper Entfernung von Isopropanol^{97a,2c)} zum Titankomplex 252, während die Umsetzung des Diamins 127^{54,99)} mit der Titanverbindungen 126⁹⁸⁾ zum Komplex 128⁵⁴⁾ führt (vergl. auch Abschnitt F).

Es ist jedoch zu beachten, daß die angegebenen Strukturen nur idealisierte Kurzschreibweisen einer wesentlich komplizierteren Realität sind. Insbesondere im Falle der durch Alkoxyliganden modifizierten Titanreagenzien muß man von einer oligo- oder polymeren Struktur der tatsächlich vorliegenden Spezies ausgehen^{97a)}. Welcher Grad an Komplexität dabei erreicht werden kann, zeigt die röntgenstrukturanalytische Untersuchung des von Sharpless¹⁰⁰⁾ zur asymmetrischen Epoxidierung eingesetzten Systems aus Tetra(isopropoxy)titan (TIPT) und Diisopropyltartrat (DIPT). Angesichts dieser Tatsachen ist es wenig verwunderlich, daß die mit diesen Reagenzien erzielten Enantiomerenüberschüsse in extremer Weise sowohl von strukturellen Variationen der Substrate als auch den Reaktionsbedingungen abhängen^{97a)}. Mit dem häufig eingesetzten System 253 gelingen nach Halogen-Metallaustausch mit Methyllithium Methylierungen von Benzaldehyd mit bis zu 76% ee, während die Reaktion mit n-Heptanal in nicht reproduzierbarer Weise Enantiomerenüberschüsse zwischen 50% und 73% ee liefert^{97a)}. Der von Reetz et al.¹⁰¹⁾ entwickelte Chlorotitankomplex 254 zeigt einen alternativen Weg zu chiralen Titanreagenzien zu gelangen auf. Hier wurde

-85-

-87-

nicht die Ligandensphäre chiral modifiziert, sondern Zentrochiralität am Metallzentrum erzeugt. Leider gelang es nicht, konfigurative Stabilität und Reaktivität in präparativ nutzbarer Weise zu verbinden. Entsprechendes dürfte für das von *Tirouflet*¹⁰²⁾ hergestellte cyclische Derivat **255** gelten (Schema 62).

Mit Ausnahme des in der Diplomarbeit⁵⁴⁾ synthetisierten Transmetallierungsreagenz' **128** dienten die oben vorgestellten Reagenzien bislang nur der asymmetrischen Übertragung niedermolekularer, gering funktionalisierter Kohlenstoffnukleophile wie Methyl, Phenyl oder Allyl. Dies trifft auch für das von *Reetz*¹⁰³⁾ aufgefundene Derivat **256** zu. Auch in diesem Fall liegt die methylierende Spezies in einer unbekannten höheraggregierten Form vor¹⁰³⁾.

Der bislang erfolgreichste Vertreter eines chiralen Titanierungsreagenzes wurde jedoch im Verlaufe der Niederschrift der vorliegenden Arbeit von *M. Riediker* et al.¹⁰⁴⁾ gefunden. Das stabile, röntgenstrukturanalytisch charakterisierte^{104d)} Cyclopentadienyl-dialkoxychlorotianat **257** (Schema 62) läßt sich mit Allylmagnesiumchlord in die entsprechende Allyltitanverbindung überführen, mit der sich hochenantioselektiv (86% < *ee* < 94%) eine große Zahl (15 Beispiele) von Aldehyden allylieren lassen. Ebenso erfolgreich läßt sich **257** zur Herstellung eines chiralen Acetat-Enolates (9 Beispiele, 91% < *ee* < 96%) und eines Glycinesterenolates (10 Beispiele, *ee* = 98%) einsetzen.

G 2 Synthese der Titanierungsreagenzien

G 2.1 Achirale Modellsysteme

Im Rahmen einer Zusammenarbeit mit dem Arbeitskreis von *H. W. Roesky* an der Universität Göttingen wurden zunächst die achiralen Komplexe **260**¹⁰⁵⁾, **262**¹⁰⁶⁾, **264**¹⁰⁷⁾ und **263**¹⁰⁸⁾ als Modellsysteme synthetisiert und auf ihre Eignung als Transmetallierungsreagenzien in der Homoaldolreaktion geprüft (Schema 63). Die Struktur des Benzamidinatokomplexes **260**¹⁰⁵⁾ und der Zirkoniumverbindung **262**¹⁰⁶⁾ wurden röntgenstrukturanalytisch gesichert, während die des Phosphinimin- und des Sulfoximidderivates **264**¹⁰⁷⁾ bzw. **263**¹⁰⁸⁾ durch Kernresonanzspektroskopie und Elementaranalysen belegt sind. Zur Synthese von **260** wurde zunächst aus Benzonitril und Lithiumhexamethyldisilazan (LHMDS) der Ligand **261** hergestellt, dessen Umsetzung mit Titantetrachlorid zum Titankomplex **260** führt¹⁰⁵⁾ (Schema 63). Die Komplexe **264** und **263** wurden durch Chlortrimethylsilan-Extrusion mit

-88-

Titantetrachlorid aus den entsprechenden N-Silyliminoverbindungen erhalten^{107,108)}.

Der Zirkoniumkomplex **262** wurde durch nukleophile Substitution eines Chloratoms im permethylierten Zirkonocendichlorid (Cp₂^{*}ZrCl₂) durch metalliertes Ferrocen synthetisiert²⁰⁶).

G 2.2 Synthese der chiralen Titankomplexe

Angeregt durch die unter *Friedel-Crafts*-Bedingungen mit hohen Ausbeuten verlaufende Deblockierung *tert*-Butyloxycarbonyl-geschützter Sulfoximide (vergl. Abschnitt **F 4.3**) lag es nahe, diese durch Verwendung von Titantetrachlorid als Lewissäure und Reagenz mit dem Syntheseschritt zu koppeln. Da nur leichtflüchtige Nebenprodukte - CO_2 und *tert*-Butylchlorid - anfallen und auch die Darstellung des *N*-Silyl-Sulfoximids entfiele, böte eine solche Methode einen besonders eleganten Zugriff auf titanorganische Verbindungen. Tatsächlich gelang die Deblockierung des bereits für die Aluminiumchlorid/Anisol-Methode herangezogenen Testsystems **211** mit Titantetrachlorid in Dichlormethan bei Raumtemp. in 89% Ausbeute (vergl. Abschnitt **F 4.3**, Schema 49). Das freie Sulfoximid **210** fiel dabei in einer Enantiomerenreinheit von 98% *ee* an, womit gleichzeitig der racemisierungsfreie Verlauf der Reaktion gezeigt war. Titanreagenzien

G 2.2.1 Umsetzung von 247 mit Titantetrachlorid

Die mit 1.0 Äquivalenten Titantetrachlorid in Dichlormethan als Solvens durchgeführte Umsetzung des *N*-BOC-*O*-silyl-hydroxysulfoximids **247** lieferte bei Raumtemp. unter Kohlendioxidentwicklung nach einer Reaktionszeit von 100 min und Entfernung der flüchtigen Bestandteile i. Vak. einen gelben Festkörper, der in Dichlormethan klar löslich war. Im 60-MHz-¹H-NMR-Spektrum erscheinen die Signale des Liganden bei $\delta = 1.8 - 2.6, 2.8 - 3.0$ und 7.5 - 8.5 ppm mit großen Linienbreiten. Dennoch ließ sich die Abwesenheit der Schutzgruppen eindeutig feststellen (Schema 64).

Inwieweit das mit **265** formulierte sechsgliedrige Ringsystem tatsächlich entstanden war, muß dabei offengelassen werden.

G 2.2.2 Reaktionen des bidentalen Liganden 203 bzw. 200 mit Titantetrachlorid

Die Bissilylierung des ethanoverbrückten Bissulfoxids **200** erfolgte durch Umsetzung mit Diethylaminotrimethylsilan in Acetonitril bei Raumtemp. und ergab **266** in quantitativer Ausbeute (Schema 65). So erhaltenes, ungereinigt eingesetztes **266** lieferte dann in stark exothermer Reaktion mit Titantetrachlorid in Dichlormethan nach Entfernung der flüchtigen Bestandteile im Vakuum einen zitronengelben Festkörper, der nur wenig in Dichlormethan löslich war. Aus dem ¹H-NMR-Spektrum von **267** leitet man aus der Anwesenheit zahlreicher, breiter Absorptionsbereiche das Vorliegen uneinheitlichen (polymeren ?) Materials ab (s. auch Abb. 13, Abschnitt **R 1.2**). Durch Verwendung des Bis-BOC-geschützten Derivates **203** (Schema 65) versprach man sich eine rasche Monodeblockierung und damit eine entropisch gegenüber der -90-

Polymerisation begünstigten Cyclisierung (vergl. Abschnitt **F** 6). Tatsächlich ließ sich nach zehnminütiger Einwirkdauer von Titantetrachlorid auf 203 dünnschichtchromatographisch das Mono-BOC-Derivat 214 (s. auch Abschnitt **F** 4.3) nachweisen. Nach zweistündigem Erhitzen auf 40 °C und der vollständigen Entfernung aller flüchtigen Bestandteile isolierte man einen gelben, extrem feuchtigkeitsempfindlichen Festkörper mit einem Drehwert von $[\alpha]^{20}_{D} = -113$ (c = 1.02, CH₂Cl₂). Zwar war dieses Produkt, anders als das aus dem Silan 266 erhaltene, in Dichlormethan und THF recht gut löslich, doch das ¹H-NMR-Spektrum zeigt auch hier nur breite "Banden". In einem gleichen Experiment mit Benzol als Lösungsmittel begann nach Zugabe von ca. 75% der stöchiometrischen Menge Titantetrachlorid die Abscheidung eines gelben Festkörpers, der sich durch Filtration unter Argon isolieren ließ. Sowohl das IR-Spektrum als auch ¹H- und ¹³C-NMR-Spektren der Substanz weisen auf die Abwesenheit von *tert*-Butylgruppen hin. Das Vorliegen der monomeren Struktur 267 kann aus den Spektren nicht abgeleitet werden.

G 2.2.3 Umsetzung mit 238

Da es nicht gelang, das Hydroxybissulfoximid **238** zu silylieren (man prüfte Chlortrimethylsilan/Dimethylethylamin und Chlortrimethylsilan/NaH), versuchte man, durch Zugabe von Isobuten den bei der Reaktion mit Titantetrachlorid freiwerdenden Chlorwasserstoff als *tert*-Butylchlorid zu binden (Schema 66).

Dazu sättigte man eine Lösung von 1.0 Äquivalenten **238** in 10 mL Dichlormethan mit Isobuten und tropfte bei Raumtemp. 1.0 Äquivalente Titantetrachlorid hinzu. Auch hier wurde zwar die erwartete Kohlendioxidentwicklung beobachtet, die im ¹H-NMR-Spektrum des isolierten gelben Festkörpers auftretenden breiten "Banden" müssen jedoch als Hinweis auf dessen uneinheitliche bzw. polymere Natur gewertet werden.

G 2.2.4 Synthese von 269¹⁰⁹⁾

Ausgehend vom bissilylierten β -Hydroxysulfoximid **246** gelang es *U. Scholz*¹⁰⁹⁾ durch Chlortrimethylsilan-Extrusion mit Titantetrachlorid in Dichlormethan bei Raumtemp. die monomere, acyclische Chlorotitanverbindung **269** herzustellen (Schema 67). Beim Erwärmen auf 50 °C cyclisiert **269** zum sechsgliedrigen Titana-Heterocyclus **270**, welcher als beigefarbener Festkörper isoliert werden konnte¹⁰⁹⁾. Der *O*-silylierte Titankomplex **269** ist ein gelber, bei 105 °C schmelzender Festkörper, der in organischen Solventien sehr gut löslich ist. Im Infrarotspektrum (Nujol) beobachtet man die für Sulfoximide charakteristischen intensiven Banden der N=S=O-Schwingungen bei 1112 cm-¹ und 1248 cm-¹. Das 300-MHz-¹H-NMR-Spektrum weist nur wenig verbreiterte Signale auf, deren Multiplizität und Intensität mit der Struktur in Einklang ist. Bemerkenswert ist die gegenüber **246** z.T. sehr große Tieffeldverschiebung aller Protonenresonanzen in den Titankomplexen **269** und **270** (Tabelle 3). Dies trifft insbesondere für das Spinsystem der diastereotopen Methylen-

Titanreagenzien

und Feuchtigkeitsempfindlichkeit die Neigung zur Cyclisierung zu **270** zu beachten. Ein nach zweimonatiger Lagerung von **269** aufgenommenes ¹H-NMR-Spektrum zeigt die Anwesenheit beider Substanzen in einem Verhältnis von ca. 65 : 35 zugunsten des acyclischen Produktes an (Abb. 8). Eigene Versuche, die Ergebnisse von *U. Scholz zu* reproduzieren, führten stets zu öligen Produkten, deren ¹H-NMR-Spektren nicht mit dem von **269** oder **270** in Einklang sind (Abb. 8).

G 2.2.5 Umsetzung von 273 mit Dichlordiisopropoxytitan

Um zu einem Transmetallierungsreagenz mit abgeschwächter Lewisacidität zu gelangen, silylierte man das Sulfoximid **272** (s. auch Abschnitt **I 1**) zum entsprechenden *N*-Silylderivat **273** und setzte dieses mit Dichlordiisopropoxytitan in Dichlormethan um (Schema 68).

Dabei wurde 272 über die bereits mehrfach angewandte Reaktionssequenz, *Andersen*-Synthese gefolgt von einer elektrophilen Iminierung des gebildeten Sulfoxides unter Retention der Konfiguration, dargestellt.

Sowohl das Sulfoxid **271**, als auch das Sulfoximid **272** wurden durch NMR-spektroskopische Daten und korrekte Elementaranalysen charakterisiert. Nach Abdestillieren des Lösungsmittels und des entstehenden, im Destillat nachweisbaren Chlortrimethylsilans isolierte man einen beigefarbenen, glasartigen Festkörper, dessen 60-MHz-¹H-NMR-Spektrum recht gut mit der für **274** angegebenen Struktur im Einklang ist. Auffällig ist dabei die starke Tieffeldverschiebung insbesondere des Signals der Aryl-CH₃-Gruppe ($\delta = 2.8$ ppm) und dasjenige der Methinwasserstoffatome in den Isopropoxy-Gruppen ($\delta = 5.4$ ppm).

protonen in **269** zu, welches um mehr als 1 ppm zu tieferem Feld verschoben erscheint. Auffällig ist auch der große Unterschied in den chemischen Verschiebungen dieser geminalen Protonen, der bei **270** 0.8 ppm beträgt ($J_{AB} = 14.8$ Hz). Dieses wertet man als Hinweis auf das Vorliegen der cyclischen Struktur **270**.

Shift ^{a)} Proton	246 [ppm]	269 [ppm]	270 [ppm
NSiMe ₃	-0.030	inde of any s and of grant	nast les s
OSiMe ₃	0.045	-0.070	
C(CH ₃) ₂	1.420/1.450	1.49/1.60	1.52
Ar-CH ₃	2.410	2.49	1.91
н-с-н	3.218/3.274	4.21/4.65	3.49/4.28
m-H	7.28	7.55	7.47
<i>o</i> -H	7.75	8.10	7.62

Im FI-Massenspektrum von **269** erscheint der $[M+1]^+$ -Peak bei m/e = 453 mit einer Intensität von 0.4%, wobei die beobachtete Intensitätsverteilung der Isotopenpeaks mit der berechneten übereinstimmen. Von beiden Komplexen wurden von *U. Scholz* korrekte Elementaranalysen vorgelegt. Bei der Handhabung von **269** ist neben der Luft-

Abb.: 8 300-MHz-¹H-NMR-Spektrum von 269 und 270 (a, synthetisiert von *U*. *Scholz*; b, eigenes Präparat).

-95-

Titanreagenzien

G 3 Prüfung der synthetisierten Chlortitanreagenzien auf ihre Eignung in der metallorganischen Synthese

Die Ergebnisse der Umsetzungen mit den obig beschriebenen Titanreagenzien bzw. mit dem Zirkoniumreagenz **262** sind in Tabelle 4 zusammenfassend dargestellt.

Dabei wurde, bis auf die aus der Tabelle ersichtlichen Ausnahmen, das Sulfonylcarbamat **46** unter den angegebenen Bedingungen deprotoniert und mit der ebenfalls in Tabelle 4 angegebenen Menge des jeweiligen Titankomplexes transmetalliert.

Das so gewonnene Reagenz brachte man mit 2-Methylpropanal zur Reaktion und trennte das Rohprodukt säulenchromatographisch in die Bestandteile. Bedingt durch die bereits beschriebene Abhängigkeit des Reaktionsverlaufes von der reagierenden metallorganischen Spezies (vergl. Abschnitt **E 2**, Schemata 15 und 16), lassen sich aus der Produktverteilung Rückschlüsse auf das Ausmaß der Transmetallierung ziehen. Dabei deuten hohe Anteile des Enons **59** im Produktgemisch auf die Reaktion der Lithiumverbindung **57** und damit auf das Ausbleiben der Ummetallierung hin. Aus dem Auftreten des Homoaldoladduktes **68** schließt man auf die Generierung einer gegenüber dem Aldehyd reaktiven Titanspezies, während zurückgewonnenes Ausgangsmaterial **46** einen Hinweis auf Ummetallierung unter Erzeugung einer

Sonstige und Reaktionsbed.	30 min -78°C 16 h RT	30 min -78°C 1 h RT	5 min -78°C 16 h RT	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 h RT
[%] 68 [%]	8	7 24	0 27	0 30	oH CH3 cH3
46[%] 59	26 3	14 4	32	40	nicht na
nierung t[min]	30 Juiv. 260	30 uiv. 264	30 Juiv. 263	5 20 3uiv. 274	30 Juiv. 265
Tita T[°C]	-78 1.1 Äc	-78 1.1 Äq	-78 1.1 Äc	-78 0 1.1 Äd	0 1.1 Ăc
ung ^{d)} [[min]	30	30	30	30	netaliorgi H
etallier	THF	THF	THE Design of	THE	entfäl
Tl°C	-78	-78	-78	-78	aamino suX meb
Ti-Reagenz ^{f)}	Ph- N CI N CI N CI N CI N CI N CI N SIMe ₃ SIMe ₃	Ph Ph Ph	Phywors minicia Me 263	PTol mmr. S NTS(OIPt)2C	PTolm Strain Str
Ausgangsmaterial	so ₂ Tol	so ₂ Tol	s02Tol	so ₂ Tol	MeMgBr
Versuch	1 ^{a)}	2 ^{a)}	3ª)	4ª)	S ^{b)}

-96-

ge und pnsbed.	-78°C RT 425	-78°C -78°C -71	-78°C -2.93	-78°C RT mocen
Sonsti Reaktio	5 min 16 h 14%	4 h $[[\alpha]_{D}^{20}] = [[\alpha]_{[g]}^{20}$	5 h $[\alpha]_{D}^{20} = [\alpha]_{B}$	5 min 48 h 81% Fe
68[%]	0	34	16	
59 [%]	0	0	0 0 0 0	0
46[%]	72	59	65	35
erung t[min]	5 20 v 267	5 30 v. 269	5 30 v. 269	30 v. 262
Titani T[°C]	-78 RT 1.1 Ăoui	-78 -20 1.1 Äqui	-78 -20 1.1 Äqui	-78 1.1 Äqui
t[min]	нғ30	r 30	30	09
Metallier °CJ LM ^{e)}	78 Hexan/T 1:1	'8 Ether	'8 Ether	78 Ether
T	s origination and	5	-7	<i>c</i> -
Ti-Reagenz ^{f)}	o, prol S. N. Cl S. N. V. Cl PTol O (267) ^D	cl ₃ 1 N=1 M P P P P P P P P P P P P P P P P P P		Cp [*] 2 ^z FeCl° 262
Ausgangsmaterial	so ₂ Tol	SO ₂ Tol	SO ₂ Tol	SO ₂ Tol
Versuch	(6 ^a)	7 ^{a)}	7a ^{a)}	8 ^{a)}

-97-

Titanreagenzien

Titan

-99-

unreaktiven titanorganischen Zwischenstufe darstellt.

Ersteres trifft beispielsweise für den Benzamidinatokomplex **260** zu (38% Enon **59** neben 26% **46**). Das durch Reaktion mit der Organotitanverbindung resultierende Homoaldoladdukt **68** konnte im Rohprodukt nicht nachgewiesen werden. Im Falle des Phosphiniminkomplexes **264** wurden beide Reaktionskanäle beschritten. Produktbildung findet sowohl über die Lithiumzwischenstufe (47%) als auch über die titanierte Form (24%) statt. Unter den achiralen und racemischen Titankomplexen scheint lediglich das Sulfoximid **263** einen vollständigen Metallaustausch zu bewirken, wobei das entstandene Homoaldoladdukt jedoch nicht diastereomerenrein anfiel.

Ausschließlich zum einheitlich E-anti-konfigurierten Homoaldoladdukt 68, jedoch ohne asymmetrische Induktion, gelangte man durch Verwendung des chiralen Sulfoximids 274. Nach dem Austausch des Lithiums mit dem sich vom Ethylenbissulfoximid 200 ableitenden Titanreagenz 267 beobachtete man überhaupt keinen Umsatz mit dem Aldehyd. Hier tritt möglicherweise die Deprotonierung von 267 in erfolgreiche Konkurrenz zur Transmetallierung. Mit 269 erzielte man einen vollständigen Metallaustausch, der zu optisch aktivem Homoaldoladdukt 68 führte. Die dabei beobachteten Enantiomerenüberschüsse fallen mit 4% ee für Versuch 7 (von U. Scholz synthetisiertes 269) und 16% ee^{*} für Versuch 7a (eigenes Präparat) in Tabelle 4 eher bescheiden aus. Darüberhinaus weist die Umkehrung des Chiralitätssinnes auf eine Abhängigkeit der induzierenden Wirkung des Titankomplexes 269 von seiner Herstellungsweise hin. So gelang es trotz mehrfacher Versuche nicht, 269 in reproduzierbarer Weise zu synthetisieren, so daß hier offensichtlich unterschiedliche Spezies mit unterschiedlichem Induktionsvermögen auftreten und so zur Entstehung von Addukten mit verschiedener Absolutkonfiguration Anlaß geben. Auffällig bei allen beschriebenen Reaktionen ist der hohe Anteil an zurückgewonnenem Ausgangsmaterial, was auf eine geringe Reaktivität der involvierten titanorganischen Intermediate schließen läßt.

^{*1}H-NMR-spektroskopisch nach Zugabe von 4.9% bzw. 5.1Mol-% Eu(hfc)₃ bestimmt

H Versuche zur Abwandlung der 4-Hydroxy-1-sulfonyl-1-alkenylcarbamate

Die bei der Verwendung sulfonfreier 2-Alkenylcarbamate 1 (X = H) durch die Homoaldoladdition einer Carbonylkomponente erhaltenen γ -Hydroxyenolcarbamate, wie z.B. **15**, lassen sich unter Quecksilberkatalyse zu den Lactolethern **16** (vergl. Einleitung, Schema 4) umsetzen^{4,110)} die ihrerseits durch *Grieco*-Oxidation¹¹¹⁾ in die γ -Lactone **17** überführt werden können (Schema 69). Entscheidend für den Reaktionsablauf ist die

Stabilisierung der positiven Partialladung an C-1 in **275** durch die Carbamoyloxygruppe, so daß es fragwürdig erschien, ob diese Methode auch auf die 1-*p*-Toluolsulfonyl-Derivate **18** anwendbar ist. Durch die Akzeptoreigenschaften der Sulfonylgruppe war zu erwarten, daß die kationische Zwischenstufe **276** gegenüber **275** energetisch stark benachteiligt wird. Tatsächlich konnte bei einem mit **68** ausgeführtem Versuch der quecksilberkatalysierten Methanolyse das Ausgangsmaterial nahezu

quantitativ wieder zurückgewonnen werden. Im Rahmen einer Cembranolid-Synthese gelang es *Marshall* et al.¹¹²⁾ die Carbamoyloxygruppe reduktiv mit Lithiumaluminiumhydrid in THF bei 65 °C zu entfernen. Daher prüfte man das Verhalten des Sulfonylcarbamates **68** gegenüber diesem Reduktionsmittel (Schema 70).

Im Gegensatz zu den Befunden von *Marshall*, führte die Reaktion mit 5 Mol-Äquivalenten Lithiumaluminiumhydrid mit 88% Ausbeute ausschließlich zum Diol **280**, dessen Struktur NMR-spektroskopisch und durch eine CH-Analyse gesichert ist. Erwartet hatte man die Bildung des Lactons **283**, da das als Primärprodukt der Reduktion postulierte Aluminiumenolat **281** nicht weiter reduzierbar sein sollte und so nach wäßriger Aufarbeitung über das Acylsulfon **282** das γ-Lacton bilden sollte. Führt man die Reaktion hingegen mit nur 0.75 Mol-Äquivalenten Lithiumaluminiumhydrid aus, isoliert man nach säulen-chromatographischer Reinigung, neben der mit

-101-

Abwandlung

Ausgangsmaterial verunreinigten Verbindung 284A³²⁾(43 mg, 10% Ausbeute), ein anderes Produkt als weißen Feststoff. Das Massenspektrum (CI, Isobutan) weist mit einem durch die Reaktion bedingten Massenzuwachs von 2 Einheiten auf eine Hydrierung hin. Ein zum Triplett aufgespaltenes Signal bei $\delta = 28.29$ ppm im gated-decoupled-¹³C-NMR-Spektrum weist auf die Anwesenheit einer nichtakzeptorsubstituierten Methylengruppe hin. Das für 68 charakteristische Signal des olefinischen Protons bei $\delta = 6.86$ ppm erscheint im ¹H-NMR-Spektrum von $284B^{32}$ (R_F = 0.18, E/P = 1:1) nicht mehr. Stattdessen tritt ein ABMX-Spinsystem auf, dessen Analyse durch Aufname eines COSY-Spektrums, sowie einer Spektrensimulation mit Hilfe des LAOCOON-III-Programmes gelang (Abb. 9). Zusammen mit der Information aus dem IR-Spektrum ($v(OH) = 3450 \text{ cm}^{-1}$) und der korrekten Elementaranalyse folgt die Struktur 284B. Das ¹H-NMR-Spektrum des uneinheitlich anfallenden unpolareren Reaktionsproduktes 284A weist dieses als das C-1 Epimere aus, wobei das Verhältnis der beiden Diastereomeren laut gaschromatographischer Analyse 70:30 zugunsten des kristallinen Derivates 284B beträgt (Gesamtausb. 34%). Offensichtlich leitet also ein Angriff des Lithiumaluminiumhydrids auf die Doppelbindung des Keten-O,S-acetals 68 die Reaktionssequenz ein, die mit einem Überschuß an Reduktionsmittel schließlich zum Diol 280 führt. Offenbar begünstigt die Toluolsulfonyl-Gruppe als Akzeptorsubstituent Additionen an die Enolcarbamat-Doppelbindung. Daher lag es auf der Hand, dies auch zur Addition von Kohlenstoffnukleophilen an die 2-Position der 1-Sulfonyl-enolcarbamate 285 zu nutzen (Schema 71).

Durch Deprotonierung eines geeigneten Substituenten (NuH) am Sauerstoffatom plante man den intramolekularen Angriff des so erzeugten Kohlenstoffnukleophils auf C-2 in **285.**

-100-

-103-

Das dabei entstehende Carbanion **286** sollte dann mit Elektrophilen zu **287** reagieren wobei unter Verwendung von Protonen nach Deblockierung, ein Homoformylkationenäquivalent (a²-Synthon) zur Verfügung stände. Durch die intramolekulare Reaktionsführung erwartete man dabei ein hohes Ausmaß an Stereokontrolle.

H1 Zur intramolekularen Michael-Addition

Als Modellsystem wählte man zunächst das enantiomerenreine, durch Acetylierung des Homoaldoladduktes 71 mit 90% Ausbeute erhaltene Acetat 288 (Schema 72). Die Struktur von 288 ist durch NMR-spektroskopische Daten, ein unter CI-Bedingungen (Isobutan) gemessenes Massenspektrum sowie einer der Summenformel entsprechenden CH-Analyse gesichert. Das durch Deprotonierung von 288 erzeugte Enolat 289 sollte nun über das Thiocarbanion 290 nach wäßriger Aufarbeitung in das δ-Lacton 292 überführt werden (Schema 72). Da vermutlich die Acidität der zur Esterfunktion α -ständigen Protonen (pK_a \approx 25) höher als diejenige des Protons an C-1 von 288 ist, war zu erwarten, daß das Gleichgewicht entweder auf der Seite des "Ausgangsenolats" 289 oder des "Produktenolats" 291 liegen würde. Das Ausmaß der Produktbildung im aprotischen Medium hängt also somit von der Differenz der pK₃-Werte der 289 und 290 zugrundeliegenden CH-Säuren ab. Am Beispiel des Thioketenacetal-S-oxides 292 wird deutlich, daß solche "Michael"-Additionen (hier: a²+d²-Prozesse) über relativ zum Ausgangsmaterial destabilisierte Carbanionen dann bereitwillig ablaufen, wenn durch eine nachfolgende Umprotonierung die Gleichgewichtslage günstig beeinflußt wird¹¹³⁾ (Schema 73). Das aus dem Primäraddukt 295 entstehende Malonesteranion 296 reagiert mit Methyliodid zu 297.

Das Acetat **288** reagierte jedoch nach Deprotonierung mit LDA weder bei -78 °C noch bei Raumtemp. unter Cyclisierung. Neben unverändertem Ausgangsmaterial konnte lediglich das desacetylierte Produkt **71** zurückgewonnen werden (7% bei -78 °C; 39% bei Raumtemp.). Daraufhin plante man, dem Sulfonylcarbanion einen nachgeschalteten, irreversiblen Alkylierungsschritt zu eröffnen (Schema 74). Für das ω Chlorbutyrat **300**, welches aus **68** und ω -Chlorbutyrylchlorid in quantitativer Ausbeute zugänglich war, besteht dieser Schritt in der Cycloalkylierung des Anions **301** zum Bicyclus **302** (Schema 74). Die Struktur von **300** ist durch ¹H- und ¹³C-NMR-Spektren sowie eine korrekte Elementaranalyse belegt. Seine Umsetzung mit KDA¹¹⁴⁾

-105-

lieferte nach einer Reaktionszeit von 5.5 h bei -78 °C eine neue Verbindung mit massenspektroskopisch ermittelten Molmasse von 493. Der sich daraus ergebende Massenverlust von 36 mu gegenüber dem Ausgangsmaterial steht im Einklang mit der erwarteten Chlorwasserstoffabspaltung. Aus der Analyse des *gated-decoupled-*¹³C-NMR-Spektrums leitete man jedoch die Struktur des Cyclopropancarbonsäurederivats **303** ab, woraus man schloß, daß anstelle der erwünschten Cycloalkylierung lediglich eine 1,3-Eliminierung eingetreten ist. Für die Kohlenstoffatome im Dreiring beobachtet man die für diese Substanzklasse charakteristische Hochfeldverschiebung, wobei die Methylenkohlenstoffatome bei $\delta = 8.23$ ppm und $\delta = 8.26$ ppm als Triplett und der Methinkohlenstoff bei $\delta =$ 12.89 ppm als Dublett erscheint. Eine von **303** erhaltene Elementaranalyse bestätigt die Bruttozusammensetzung der Substanz.

Angesichts der gescheiterten Versuche, die 2-Position in den 1-Sulfonyl-1-alkenylcar-

bamaten **288** und **300** unter aprotischen Bedingungen anzugreifen, versuchte man, durch eine rasche, irreversible Protonierung der carbanionischen Zwischenstufe zum Ziel zu gelangen. Die Wirksamkeit dieser Maßnahme zeigt das von *Hirama*¹¹⁵⁾ studierte System **304** (Schema 75), bei dem nur unter protischen Bedingungen Cyclisierung zum Carbamat **307** eintritt. Das Modellsystem **308** wurde durch Acetoacetylierung mit Diketen in 95% Ausbeute synthetisiert und sollte unter den im Schema 76 angegeben protischen Bedingungen durch rasche, irreversible Protonierung der Zwischenstufe **309** durch Methanol in das δ -Lacton **301** überführt werden. Für das Acetoacetats **308** konnten der Struktur entsprechende ¹H-NMR-und ¹³C-NMR-Spektren erhalten werden. In einem unter CI-Bedingungen aufgenommenen Massenspektrum erscheint der [M+1]⁺-Peak bei m/e = 510 mit einer Intensität von 26%. Zur Bestätigung der Bruttozusammensetzung von **308** wurde eine korrekte Elementaranalyse angefertigt. Die Umsetzung des Acetoacetats **308** mit 10mol-% Kaliummethanolat in Methanol führte jedoch nach 30 h bei 65 °C lediglich zur vollständigen Rückbildung des 1-Sulfonyl-4-hydroxyalkenylcarbamates **68** (Schema 76).

Um zu prüfen inwieweit **68** überhaupt in der Lage ist Nukleophile aufzunehmen, untersuchte man die Umsetzung eines geschützten Derivates von **68** mit Vinylmagnesium-

bromid unter Kupfer(I)-Katalyse (Schema 77). Dazu synthetisierte man den Silylether **311** durch Silylierung von **68** mit Diethylaminotrimethylsilan in 89% Ausbeute als farbloses Öl. Seine Struktur und Bruttozusammensetzung ist durch NMR-spektroskopische Daten und eine passende Elementaranalyse belegt. In der Reaktion mit dem Vinylcuprat jedoch konnte bei – 78 °C dünnschichtchromatographisch kein Umsatz registriert werden, während eine Erhöhung der Reaktionstemperatur lediglich zur Zersetzung des Cuprates führte. Das Silan **311** konnte nahezu quantitativ wieder zurückgewonnen werden. Offenbar führt die capto-dative Substitution der Doppelbindung in den Sulfonylenolcarbamaten dazu, daß weder kationische noch anionische Zwischenstufen wirksam stabilisiert werden. Arbeiten von

-108-

*Balaban*¹¹⁶⁾, *Baldock*¹¹⁷⁾ und insbesondere von *Viehe* et al.¹¹⁸⁾ zeigen jedoch, daß diese Art der Substitution zu einer guten Stabilisierung radikalischer Intermediate führt (Schema 78). Durch die Wechselwirkung eines Donators D mit dem SOMO eines

Methylradikals entsteht ein SOMO Ψ_2 im donatorsubstituierten Radikal H₂•CD, dessen Energie der LUMO-Energie des Akzeptors angeglichen ist. Darüberhinaus tritt durch die energetische Absenkung des SOMO (•CH₃) durch den Akzeptor A eine energetische Angleichung zwischen dem SOMO (A•CH₂) und dem HOMO des Donors ein. Durch die capto-dative Substitution erwartet man also ein synergistisches Anheben und Absenken der Energien der wechselwirkenden Orbitale, so daß deren stabilisierende Wechselwirkungen maximal werden. Die erwartete capto-dative Radikalstabilisierung plante man in Anlehnung an Arbeiten von *Stork*¹¹⁹ und *Tamao*¹²⁰ durch eine intramolekulare Radikalreaktion des Silylethers **315** zu nutzen (Schema 79).

315 wurde aus **68** mit kommerziell erhältlichem Brommethylchlordimethylsilan in 71% Ausbeute als farbloses Öl erhalten. Im ¹³C-NMR-Spektrum von **315** beobachtet man die Resonanz des Methylenkohlenstoffatoms der Brommethylsilyl-Gruppe als Triplett bei δ = 16.82 ppm, während im ¹H-NMR-Spektrum die entsprechenden Protonen als Singulett bei δ = 2.508 ppm absorbieren und damit gegenüber Methylbromid (δ = 2.69 ppm) nur einen geringen Hochfeldshift durch das Silizium erfahren. Eine korrekte Elementaranalyse und ein Infrarotspektrum vervollständigen die Charakterisierung von **315**.

Das Silan wurde mit Tributylstannan in Gegenwart von Azobisisobutyronitril (AIBN) in Benzol auf 80 °C erhitzt. Dabei wurde dünnschichtchromatographisch das Auftreten eines Reaktionsproduktes festgestellt, welches nach Aufarbeitung und säulenchromatographischer Reinigung mit 55% Ausbeute, neben 12% zurückgewonnenem Ausgangsmaterial, isoliert werden konnte. Die Analyse des ¹H-NMR-Spektrums wies das Reaktionsprodukt jedoch nicht als das gewünschte cyclische Siloxan **318**, sondern als den bereits bekannten Silylether **311** aus. Offensichtlich erfolgte die Wasserstoffübertragung auf das Radikal **316** durch Tributylstannan rascher als die Cyclisierung zu **317**. Außer der Reduktion mit Lithiumaluminiumhydrid (Abschnitt H), konnten bislang keine weitere Umsetzungen an der trisubstituierten, capto-dativ stabilisierten Doppelbindung der 1-Sulfonyl-enolcarbamate realisiert werden (s. auch Tabelle 5).

Auch die bereits an einer Reihe von Vinylsulfonen erprobte methylierende Desulfony-

Edukt	Reagenzien	Bedingungen	Ergebnis	Lit.
68	H ₂ O ₂ /OH ⁻	Aceton; 45°C	keine Reaktion	[121,122
68	tBuOOH VO(acac) ₂	CH2Cl2/RT	keine Reaktion	[123]
68	Na ₂ S ₂ O ₄	DMF/H2O	keine Reaktion	[124]
68	OsO4/Me3N-O	tBuOH/Py/H ₂ O	keine Reaktion	[126]
311	MeMgCl/Ni(acac)2	THF∕-78°C→RT	keine Reaktion	[125]

lierung¹⁷⁵⁾ mit Methylmagnesiumhalogeniden und Nickelacetonylacetonat sowie die reduktive, unter Retention der Konfiguration verlaufende Entfernung der Sulfonylgruppe mit Natriumdithionit¹²⁴⁾ führten mit **68** als Substrat zu keiner meßbaren Umsetzung.

I Zur Anwendbarkeit S-chiraler, nichtracemischer, S(VI)-Bausteine als Syntheseäquivalente asymmetrischer d³-Synthone³²⁾

Ausgelöst durch die Synthese des ersten Sulfoximids durch *Bentley* im Jahre 1950¹²⁷⁾ und der erstmaligen Darstellung eines Sulfonimidamides durch *Levchenko* im Jahre 1963¹²⁸⁾, begann Mitte der sechziger Jahre die systematische Untersuchung zum stereochemischen Verlauf der nukleophilen Substitution an tetrakoordinierten, hexavalenten Schwefelverbindungen^{75,84)}. Im Rahmen dieser Arbeiten wurden nicht nur mechanistische Aspekte geklärt, sondern darüberhinaus eine Reihe von Vertretern neuer Stoffklassen zum erstenmal in enantiomerenreiner Form synthetisiert (Schema 80).⁸⁴⁾

In der Folgezeit erschienen eine Reihe von Arbeiten (s. Tabelle 6 und Schema 80), insbesondere von *Johnson* et al., die sich mit dem Synthesepotential den neuen, potentiell optisch aktiven Verbindungen beschäftigten. Im Vordergrund des Interesses standen dabei die verhältnismäßig leicht in enantiomerenreiner Form zugänglichen Sulfoximide **321** und *S*-Aminosulfoxoniumsalze **322** (Tabelle 6). Weitaus weniger ist über die Chemie der Sulfonimidoate **323**, der Sulfonimidamide **324** und der Sulfonimidoylhalogenide **325** bekannt. Während die zuletzt genannten Stoffklassen in optisch aktiver Form lediglich in mechanistischen Arbeiten⁸⁴) beschrieben wurden, wurden racemische Sulfonimidoylfluoride und Sulfonimidoate als Elektrophile zur

Synthese von Sulfoximiden eingesetzt⁵⁹⁾. Nur sehr wenig bekannt ist über das Synthesepotential der Sulfonimidamide, die im präparativen Bereich bislang lediglich in racemischer Form eingesetzt wurden¹³⁷⁾. Angeregt durch die in vorliegender Arbeit gewonnenen Erfahrungen mit optisch aktiven, tetrakoordinierten Schwefelverbindungen, lag es nahe, durch geeignete Substitution mit einer 2-Alkenvlgruppe ein chirales Syntheseäquivalent für ein d^3 -Synthon zu konstruieren (Schema 8132)).

Die im Schema aufgeführten potentiellen Vorläufer chiraler Allylanionen sollten daraufhin untersucht werden, ob sie deprotoniert und nach Transmetallierung regio-

2

3

4

5

6

und stereoselektiv hydroxyalkyliert werden können. Dabei hoffte man auf konfigurative Labilität der lithiierten Zwischenstufen, um dann - gelenkt durch die *S*-Chiralität - unter möglichst hoher diastereofacialer Selektivität mit einem achiralen Transmetallierungsreagenz zu einer am C-1 einheitlich konfigurierten Organometallverbindung zu gelangen. Diese könnte dann in bekannter Weise (s. Einleitung) reagenzkontrolliert mit einer Carbonylkomponente via 1,3-Chiralitätstransfer zum ebenso einheitlich konfigurierten Homoaldoladdukt abreagieren.

11 Synthese und Eigenschaften des N-Allylsulfoximids 327

Angesichts der bereits ausgearbeiteten Synthese des *N*-Allylsulfoximids **192** (s. Abschnitt **F 3.3**), lag es nahe, zunächst das entsprechende *tert*-Butylderivat **327** zu untersuchen (Schema 82).

Die *N*-Allylierung des Sulfoximids **272** (vergl. Abschnitt **G 2.2.5**) unter den für **192** optimierten Bedingungen führte mit 75% Ausbeute zum *N*-Allylsulfoximid **327**. Im ¹H-NMR-Spektrum von **327** erscheint das der *tert*-Butylgruppe entsprechende Signal bei $\delta = 1.36$ ppm. Der AB-Teil des Spinsystems der Allyleinheit weist infolge der zufälligen Übereinstimmung der Allylkopplungen lediglich 24 der zu erwartenden 32 Linien auf. Ein ¹³C-NMR-Spektrum und eine korrekte Elementaranalyse vervollständigen die Charakterisierung von **327**.

Zur Metallierung versetzte man **327** bei -78 °C mit *n*-BuLi/TMEDA und fügte nach einer Metallierungsdauer von 30 min 1.1 Äquiv. 2-Methylpropanal hinzu (Schema 83). Nach essigsaurer Aufarbeitung und säulenchromatographischer Reinigung isolierte man mit 40% Ausbeute ein farbloses Öl, dessen Infrarotspektrum die Anwesenheit einer Hydroxygruppe anzeigte. In dem unter CI-Bedingungen (Isobutan) aufgenommenen Massenspektrum erscheint der $[M+1]^+$ -Peak bei m/e = 324, welches einem Massenzuwachs von 72 mu gegenüber dem Ausgangsmaterial entspricht und

damit einen starken Hinweis auf die Addition von Isobutyraldehyd darstellt. Das ¹H-NMRund das ¹³C-NMR-Spektrum belegt eine unversehrte *N*-Allylgruppe, die sich in der Protonenresonanz durch ihr charakteristisches Spinsystem (ABM₂X) und in der Kohlenstoffresonanz durch ein Triplett bei $\delta = 45.92$ ppm (=NCH₂) zu erkennen gibt. Den Schlüssel zur Struktur lieferte schließlich die Analyse des Spinsystems der aromatischen Protonen. Da dieses nur noch aus drei Protonen besteht, mußte man von einer *o*-Metallierung des *p*-Toluolsulfonimidoylrestes ausgehen. Tatsächlich steht der so erhaltene Strukturvorschlag **329AB**³² mit Lage und Multiplizität der beobachteten Kernresonanzen im Einklang. Bemerkenswert ist dabei das Auftreten einer ⁶*J*-Kopplung zwischen dem benzylischen Proton und einem der beiden *m*-Protonen des Aromaten. Dieses letztgenannte Proton weist darüberhinaus eine *meta*- (*J* = 2.0 Hz) und eine ortho-Kopplung (*J* = 8.13 Hz) auf, welches den Eintritt des Elektrophils in die *ortho*Position des Aromaten beweist. Im ¹³C-NMR-Spektrum findet man die Resonanz des substituierten -Kohlenstoffatoms mit δ = 148.27 ppm in charakteristischer Weise zu tiefem Feld verschoben.

Die Metallierung hat also nicht zur Abstraktion eines Protons im Allylteil von **327**, sondern zu einer solchen in *ortho*-Position geführt (**319**). Die anschließende Hydroxyalkylierung lieferte dann die epimeren Benzylalkohole **329AB** im Verhältnis 92 : 8, wobei die Relativkonfigurationen der Diastereomeren nicht bestimmt wurden (Ausbeute 40%; die Epimeren wurden nicht getrennt). Damit stellt die Sulfonimidoyleinheit in **327** vermutlich das erste Beispiel einer chiralen "directed metalation group^{*138)} dar, wobei die mit 2-Methylpropanal erzielte Diastereoselektivität von 92% *ds* durch Variation des Substituenten am Imidstickstoff sicherlich noch erhöht werden kann.

12 Zur Darstellung des Sulfonimidoates 343

Die Synthese optisch aktiver Sulfonimidoate bzw. Sulfonimidoylhalogenide ist Gegenstand einer nur sehr begrenzten Anzahl von Arbeiten. So gelang *Johnson*¹³⁹⁾ 1971 die Darstellung des optisch aktiven Sulfonimidoylchlorides **332** durch chlorierende Oxidation des Sulfinamids **331**, welches zuvor aus dem enantiomerenreinen Sulfoximid **330** durch Reduktion mit Aluminiumamalgam gewonnen wurde (Schema 84). Dabei konnte gleichzeitig der stereochemisch einheitliche Verlauf des Oxidationsschrittes unter Retention der Konfiguration gezeigt werden.

-117-

D.J. $Cram^{84}$ gelang die Synthese des Sulfonimidoates **193** (s. auch Abschnitt **F 3.3**) durch nukleophile Substitution am N-Menthyloxycarbonylsulfonimidoylchlorid (S)-336b (vergl. Abschnitt I 5), welches durch fraktionierende Kristallisation in enantiomerenreiner Form isoliert wurde (Schema 84). Während das letztgenannte Verfahren wegen der Instabilität der Sulfonimidoylchloride nicht generell anwendbar ist, erscheint die Johnson'sche Variante über enantiomerenreine Sulfinamide präparativ interessanter. Dies gilt umso mehr, da enantiomer angereicherte Sulfinamide (57 - 87% ee) durch Reaktion vom Magnesiumamiden mit p-Toluolsulfinsäurementhylester 38 heute einfacher zugänglich sind⁶⁴⁾ als durch Reduktion entsprechender Sulfoximide (vergl. Abschnitt I 3). Da jedoch, wie angedeutet, die nukleophile Substitution mit Stickstoffnukleophilen nicht immer mit hohen Stereoselektivitäten verläuft. plante man durch Wahl einer chiralen Hilfsfunktion eine Diastereomerentrennung entweder auf der Stufe der Sulfinamide 335cAB oder auf der Stufe der Sulfonimidoate 336cAB (Schema 85). Dazu erschien es sinnvoll, diese mit einem "polaren Anker" zu versehen, der bei Bedarf durch Erhöhung der Polarität die chromatographische Trennbarkeit der Diastereomeren günstig beeinflussen sollte. Wie Schema 85 zu entnehmen ist, fiel die Wahl auf das leicht aus S-Valin 339 zugängliche (S)-O-Trimethylsilvlyalinol 344c, welches mit racemischem p-Toluolsufinylchlorid 333 in nahezu quantitativer Ausbeute (99% Rohprodukt) zu einem 1 : 1-Diastereomerengemisch der Sulfinamide 335cAB umgesetzt werden konnte.

Im ¹H-NMR-Spektrum erscheinen die Amidprotonen bei $\delta = 4.17$ ppm bzw. 4.38 ppm. Ein unter CI-Bedingungen (Methan) aufgenommenes, hochaufgelöstes Massenspektrum sowie eine Elementaranalyse bestätigen Bruttozusammensetzung und Reinheit der Sulfinamide. Während der Versuch einer chromatographischen Trennung der Diastereomeren **335cAB** lediglich zu einer Anreicherung eines der beiden auf 75% führte, gelang die Trennung nach Desilylierung mit Methanol/Kaliumcarbonat⁹⁶ problemlos, da eines der beiden Hydroxysulfinamide **345A/B**³²⁾ in kristalliner Form anfiel (R_F = 0.35, E/P = 1:1), während das ölige Diastereomere (R_F = 0.29) in der Mutterlauge zurückblieb. So gelingt es bereits nach einmaliger Kristallisation aus Ether/Hexan, ein Präparat zu erhalten, indem sich ¹H-NMRspektroskopisch das andere Diastereomer nicht mehr nachweisen läßt. Damit steht also eine Methode zur Verfügung, die es erlaubt, mit geringem präparativem Aufwand zu einem enantiomerenreinen Sulfinamid zu gelangen. Es sollte damit gleichzeitig über die stereospezifische oxidative Chlorierung einen bequemen Zugang zu enantio-

Zur Synthese der Ester **343AB** prüfte man zunächst in Anlehnung an die *Johnson*'schen Arbeiten⁸³⁾ die Umsetzung der Chloride **336cAB** mit dem Natriumsalz des *E*-Crotylalkohols bei 0 °C. Doch weder unter diesen Bedingungen noch mit dem freien Alkohol und Dimethylethylamin bildeten sich die gewünschten Sulfonimidoate **343AB**. Stattdessen konnte aus dem Rohprodukt der Umsetzung von **336cAB** mit Crotylalkohol und Dimethylethylamin eine laut kapillargaschromatographischer Analyse einheitliche Verbindung gewonnen werden, deren ¹H-NMR-Spektrum mit dem Sulfonamid **340** in Einklang ist (Schema 86). Offenbar sind die Ester **343AB** derart

eliminierungsgefährdet, daß sie schnell unter Basenkatalyse in Butadien und das Sulfonamid 340 zerfallen.

Angesichts dieser Basenlabilität erschien es wenig sinnvoll, nach alternativen Wegen zur Synthese der Imidoate zu suchen.

I 3 Synthese und Eigenschaften des Sulfonimidamides 348

In dieser Hinsicht unproblematisch erscheint dagegen die Verwendung von 2-Alkenylsulfonimidamiden **341**, deren Hydroxyalkylierungsprodukte **342** darüberhinaus als Enamide leicht zu deblockieren sein dürften (Schema 87). Ferner sind die dabei anfallenden sekundären Sulfonimidamide **344**, wie eigene orientierende Vorversuche ergaben, konfigurativ stabil und leicht am Amidstickstoff zu den entsprechenden 2-Alkenylsulfonimidamiden alkylierbar. Außerdem besteht durch Variation der Gruppe R³ in diesen Verbindungen ein zusätzliches Instrument zur Beeinflussung der Diastereoselektivität zur Verfügung. Ausgehend von diesen Überlegungen entwickelte man unter Einbeziehung des bewährten Valinolrestes (s. o.) als "resolution handle" den in Schema 88 angegebenen Syntheseplan zum *N*-Allylsulfonimidamid **348** (R_F = 0.59,

merenreinen Suffonfmidoyinalogeniden, Suffonfmidoaten sowie Suffonfmidamiden (s. t.) eröffnen. Zusätzlich besteht durch den Verbleib des chiralen Auxiliars im Molekül stets die Option auf eine Nachreinigung, falls eine Syntheseoperation nicht mit der gewünschten Stereoselektivität verlaufen sollte. Beide Diastereomere sind durch NMR-spektroskopische Daten sowie jeweils eine korrekte Elementaranalyse charakterisiert. Im Bestreben, einen Zugang zu den 2-Alkenylsulfonimidoaten **343AB** zu entwickeln, verzichtete man jedoch auf eine Diastereomerentrennung, um zunächst einmal die prinzipielle Gangbarkeit des in Schema 85 formulierten Syntheseweges zu untersuchen. Um zuvor die Stereoselektivität der Oxidation mit *tert*-Butylhypochlorit zu überprüfen, führte man diese am 75 : 25-Epimerengemisch der Sulfinamide **335cAB** aus. Nach 15 minütiger Einwirkdauer des Hypochlorits wurde ¹H-NMR-spektroskopisch eine quantitative Umsetzung zu den Sulfonimidoylchloriden **336cAB** festgestellt. Das Diastereomerenverhältnis der entstandenen epimeren Chloride **336cAB** zeigte mit 78 : 22 im Rahmen der Meßgenauigkeit (¹H-NMR) eine gute Übereinstimmung mit dem des Ausgangsmaterials **335cAB**; die chlorierende Oxidation mit *tert*-Butylhypochlorit verläuft also auch hier epimisierungsfrei.

Dabei sollte eine Diastereomerentrennung entweder bereits auf der Stufe der *O*-silylierten Sulfonimidamide **346A/B** oder erst nach Desilylierung zu den Hydroxysulfonimidamiden **837A/B** erfolgen. Nicht geprüft wurde die prinzipielle Möglichkeit, **346A** oder **346B** aus den enantiomerenreinen Sulfinamiden **345A** ($R_F = 0.35$, EE/P = 1:1)oder **345B** ($R_F = 0.29$) (s. auch Schema 85, Abschnitt I 2) durch chlorierende Oxidation unter Retention und nachfolgende nukleophile Substitution des entsprechenden Sulfonimidoylchlorides **336cA** oder **336cB** unter Inversion zu erhalten. Die ungereinigten diastereomeren Chloride **336cAB** (aus einem 77 : 23 -Epimerengemisch der Sulfinamide **335cAB** erhalten) wurden mit Allylamin zu den epimeren *O*-Silylsulfonimidamiden **346A** und **346B** umgesetzt, die chromatographisch getrennt ($R_F =$ 0.54 bzw. 0.46, E/P = 1:1) und in einer Gesamtausbeute von 75% (bezogen auf **335cAB**) isoliert wurden. Sowohl gaschromatographisch, als auch durch Auswaage der getrennten Isomeren wurde ein Diastereomerenverhältnis von 78 : 22 ermittelt, welches vorzüglich mit dem der entsprechenden Sulfinamide 335cAB korrespondierte und so die hohe Stereoselektivität der in die Reaktionssequenz involvierten Einzelschritte belegt. Im IR-Spektrum erscheint die N-H-Valenzschwingung des unpolareren Diastereomeren 346A bei 3270 cm-1 und die des polareren 346B bei 3250 cm-1. Im CI-Massenspektrum (Isobutan) stimmt der [M+1]⁺-Peak für beide Diastereomere mit dem Basispeak überein. Auch die ¹H-NMR-Spektren sind bezüglich der chemischen Verschiebung und Multiplizität der jeweiligen Protonenresonanzen einander sehr ähnlich, wobei es jedoch beim unpolareren Diastereomeren 346A zu einer starken Überlagerung des Spinsystems der Allyleinheit mit dem ABX-Spinsystem des Valinolrests kommt. Von beiden Epimeren 346A und 346B wurden passende Elementarianalysen angefertigt. Das diastereomerenreine Sulfonimidamid 346A ($[\alpha]$ 20_D = +15.7, c = 1.61, Aceton) wurde mit Kaliumcarbonat/Methano1⁹⁶⁾ desilyliert und erhaltenes 347 nach doppelter Deprotonierung mit 1.1 Äquivalenten KTB mit einem Überschuß Methyliodid zunächst bei 0 °C, dann 16 h bei Raumtemp. methyliert (Schema 88). Die säulenchromatographische Reinigung ergab neben dem erwarteten unpolaren Produkt 348 (41% Ausbeute) ein weiteres, polareres ($R_F = 0.23$, E/P = 1:1) dem man die Struktur der monomethylierten Verbindung 349 zuordnete (Ausbeute 25%). Im IR-Spektrum von 349 beobachtet man eine breite Absorption bei 3450 cm⁻¹, wie sie in Lage und Form für die O-H Valenzschwingung typisch ist. Das Signal der am Stickstoff gebundenen Methylgruppe erscheint im gated-decoupled-¹³C-NMR-Spektrum als Quartett bei $\delta = 35.20$ ppm, während es im ¹H-NMR-Spektrum (C₆D₆) bei $\delta = 1.93$ ppm als Singulett auftritt. Für das *O*-methylierte Isomere würde man die genannten Absorptionen bei wesentlich tieferem Feld erwarten²⁹⁾. Die Bruttozusammensetzung des diastereomerenreinen Hydroxysulfonimidamids 349 konnte durch eine korrekte Elementaranalyse bestätigt werden.

Das rascher eluierende, in 41% Ausbeute anfallende Produkt der Methylierungsreaktion erwies sich als das gewünschte, optisch aktive, dimethylierte Sulfonimidamid **348** (Schema 88), dessen Struktur durch ¹H-NMR-Messungen in C₆D₆ durch Anwendung der *correlated spectroscopy* (COSY) eindeutig geklärt werden konnte (Abb. 10). Die Verwendung von Perdeuterobenzol als Solvens ist dabei zur getrennten Analyse der Spinsysteme des Valinolteils und der *N*-Allylgruppierung von ausschlaggebender Bedeutung. Von **348** wurde eine passende Elementaranalyse erhalten. Zur Prüfung der Metallierbarkeit des Imidamides versetzte man **348**, gelöst in

I 4 Versuche zur Synthese des tert-Butylsulfonimidamides 352

Die retrosynthetische Analyse weist auf folgende Synthesemöglichkeiten für 352 hin (Schema 90).

Ausgehend von *tert*-Butylsulfinylchlorid **353** und (*S*)-*O*-Trimethylsilylvalinol **334c** plante man zunächst die Synthese und Trennung der diastereomeren Sulfinamide **354A** und **354B**. Diese sollten dann über das Sulfonimidoylchlorid **355** in das Zielmolekül **352** überführt werden.

Dabei war es jedoch zunächst notwendig, einen einfachen Zugang zum Sulfinylchlorid **353** zu finden, dessen Synthese zwar literaturbekannt, jedoch recht umständlich und

Hexan, bei -78 °C mit *n*-BuLi, deprotonierte 60 min und fügte dann 1.5 Äquiv. 2,2-Dimethylpropanal hinzu. Eine nach 75 min durchgeführte dünnschichtchromatographische Analyse der Reaktionsmischung zeigte das Vorhandensein einer Vielzahl neuer Substanzen an. Eine säulenchromatographische Trennung des nach saurer Aufarbeitung erhaltenen Rohproduktes führte zur Isolierung einer dünnschichtchromatographisch einheitlichen Hauptfraktion, die sich aber im ¹H-NMR-Spektrum als Substanzgemisch zu erkennen gab. Daneben wurde mit 4.4% Ausbeute ein einheitlicher Stoff isoliert, der nach Analyse seines 300-MHz-¹H-NMR-Spektrums als das *ortho*-hydroxyalkylierte Sulfonimidamid **350** identifiziert wurde (Schema 89). Offensichtlich ist hier ebenfalls, wie im *N*-Allylsulfoximid **327** (s. Abschnitt **I 1**), die Deprotonierung der zur Schwefelfunktion *o*-ständigen Protonen im Aromaten begünstigt. Um diese Komplikation auszuschließen, strebte man nun die Synthese des *tert*-Butyl-Derivats **352** an.

geruchsbelästigend ist¹⁴⁰⁾. Durch Oxidation von Di-*tert*-butyldisulfid **357** mit Wasserstoffperoxid wurde der Sulfinsäure-*S-tert*-butylester **358** erhalten, dessen chlorierende Spaltung zum gewünschten Sulfinylchlorid **353** und dem Sulfenylchlorid **359** führt (Schema 91). Wesentlich eleganter erschien der Weg über das von *Rheinboldt*

zur Synthese anderer Sulfinsäurechloride¹⁴²⁾ aus den entsprechenden Natriumsalzen durch Chlorierung mit Thionylchlorid plante man die Übertragung dieser Reaktion auf das Magnesiumsalz 360 (Schema 92). Die Trennung des tert-Butylsulfinylchlorids 353 von den dabei anfallenden Nebenprodukten - Schwefeldioxid und Magnesiumchlorid - sollte durch einfache Destillation möglich sein. Man versetzte das ungereinigte, etwas Magnesiumhydroxid enthaltendende Magnesiumsulfinat 360 zunächst bei 0 °C mit 2.0 Äquiv. Thionylchlorid, rührte dann 30 min bei Raumtemp. und erhitzte nach Zugabe von Dichlormethan zum Sieden. Die Destillation ergab mit 50% Ausbeute (bezogen auf tert-Butylchlorid) das ¹H-NMR-spektroskopisch einheitliche tert-Butylsulfinylchlorid 353 als gelbliche Flüssigkeit. Die Umsetzung mit (S)-O-Trimethysilylvalinol 334c führte mit 83% Ausbeute zu den diastereomeren Sulfinamiden 354A ($R_F = 0.25$, E/P = 1:1) und 354B ($R_F =$ 0.13) im Verhältnis 60 : 40 (Schema 90), die anders als die entsprechenden p-Toluolsulfinamide 345A und 345B leicht chromatographisch auf Kieselgel getrennt wurden und als farblose Öle anfallen. Bemerkenswert ist die für beide Diastereomere 354A und 354B zu beobachtende jeweilige Übereinstimmung der J_{AX} - und J_{BX} - Kopplung des ABX-Spinsystems des Valinolfragmentes. Im ¹³C-NMR-Spektrum erscheint der quartäre Kohlenstoff der tert-Butylgruppe bei $\delta = 55.76$ ppm bzw. 55.73 ppm, wobei auch für die chemischen Verschiebungen aller

anderen Kohlenstoffatome beider Diastereomeren weitgehende Übereinstimmung besteht. Die Basispeaks der CI-Massenspektren (Isobutan) der Epimeren stimmen mit dem jeweiligen [M+1]⁺-Peak überein. Darüberhinaus konnte jeweils eine korrekte Elementaranalyse erhalten werden. Damit wurden erstmals aliphatische Sulfinsäureamide in enantiomerenreiner Form synthetisiert.

Bedauerlicherweise nahm jedoch deren geplante Oxidation mit *tert*-Butylhypochlorit zum Sulfonimidoylchlorid **355** (Schema 93) einen unerwarteten Verlauf; der Versuch, aus dem vermeintlich entstandenen Chlorid **355** mit Allylamin das Sulfonimidamid **356** herzustellen, führte zu einem Gemisch aus einer Vielzahl nicht identifizierter Verbindungen, in dem man letzteres nicht nachweisen konnte. Möglicherweise

fragmentiert das Chlorid **355** unter Bildung des Chlorsulfinamids **362** oder geht durch einen sigmatropen Prozeß in das Sulfinylamin **363** über.

I 5 Synthese und Hydroxyalkylierung von S-Allylsulfoximiden

Durch Verwendung des *S*-2-Alkenylsulfoximids **338** plante man, die Regiochemie der Deprotonierung durch die hohe Acidität der allyständigen Protonen besser zu kontrollieren (Schema 94). Damit bestünde die Möglichkeit, die bereits am chiralen

Sulfoxid **365** (R = H) von *Hua* et al.²⁵⁾ entwickelten stereoselektiven Transformationen, die unter anderem zur Synthese des Hirsutens^{25b)} führten, auf die tetrakoordinierte Spezies **338** zu übertragen. Da *S*-Allylsulfoximide ungleich den allylischen Sulfoxiden nicht durch [2.3]-sigmatrope Umlagerung racemisierungsgefährdet sind (s. Abschnitt C) und in 3-Position auch Alkylsubstituenten tolerieren, scheinen im Sulfoximid **338** die Vorzüge des Sulfoxides durch strukturelle Variabilität und konfigurative Stabilität ergänzt zu sein. Darüberhinaus sollten sich durch die zusätzliche chirale Hilfsfunktion R* die Regio- und Stereochemie elektrophiler Substitutionen gezielt lenken lassen. Da

es aus den oben genannten Gründen nicht möglich ist, enantiomerenreine 2-Alkenylsulfoximide aus den entsprechenden Sulfoxiden zu gewinnen und das dem Sulfinsäureester **38** analoge Menthylsulfonimidoat **366** nicht zugänglich ist (Schema 95, vergl. auch Abschnitt **F 3.3**), zog man zu ihrer Synthese die *S*-Alkylierung der Sulfonimidoylfluoride **337AB** mit lithiumorganischen Reagenzien in Betracht (Schema 96).

Die notwendige Diastereomerentrennung wurde zunächst auf die Stufe der Sulfoximide

338A und **338B** verlegt. Man setzte als chirale Hilfsgruppe das kommerziell erhältliche (S)- α -Phenylethylamin 334a ein und erhielt aus der Umsetzung mit p-Toluolsulfinylchlorid 333 mit 81% Ausbeute ein Gemisch der diastereomeren Sulfinamide 335aAB, welches chromatographisch nicht trennbar war. Die nachfolgende oxidative Chlorierung mit tert-Butylhypochlorit ergab in quantitativer Ausbeute die Sulfonimidovlchloride 336aAB als weiße Festkörper, die ohne weitere Reinigung oder Trennung mit Kaliumfluorid in Acetonitril in Gegenwart katalytischer Mengen 18-Krone-6 umgesetzt wurden. Die säulenchromatographische Reinigung des Rohproduktes lieferte dann die epimeren Fluoride 337aAB als farblose Festkörper in einer Gesamtausbeute von 86% (bezogen auf 335aAB). Im 300-MHz-¹H-NMR-Spektrum des Isomerengemisches (52 : 48) gibt sich die Anwesenheit eines Fluoratoms durch das Auftreten einer ${}^{4}J_{HF}$ -Kopplung von 4.5 Hz im Signal des benzylischen Protons zu erkennen. Bemerkenswert ist ferner die nur für ein Epimeres beobachtete ${}^{5}J_{HF}$ -Kopplung (0.64 Hz) im Signal der Methylgruppe des Auxiliars. Im IR-Spektrum beobachtet man die für Sulfonimidoylfluoride charakteristischen⁵⁹⁾ Banden der N=S=O Valenzschwingung bei 1198 und 1180 cm¹. Der bei m/e = 105 auftretende Basispeak im unter CI-Bedingungen (Isobutan) aufgenommenen Massenspektrum läßt sich dem C₈H₉⁺-Kation zuordnen, während der
$[M+1]^+$ -Peak bei m/e = 278 mit einer Intensität von 25% auftritt. Eine der Summenformel entsprechende Elementaranalyse bestätigt die Bruttozusammensetzung. Der letzte, zu den Zielmolekülen **338aA** und **338aB** führende Syntheseschritt besteht, wie Schema 96 zu entnehmen ist, in einer nukleophilen Substitution des Fluorids durch Allyllithium, welches aus einem entsprechenden Stannan hergestellt wurde¹⁴³⁾ Um diese zusätzliche Syntheseoperation einzusparen, versuchte man zunächst, das Fluorid mit käuflichem Allyltrimethylsilan umzusetzen (Schema 97).

Dazu versetzte man **337aAB** und Allyltrimethylsilan bei -78 °C mit 10mol-% Trifluormethansulfonsäuretrimethylsilylester (TMSOTf) und erhöhte anschließend unter dünnschichtchromatographischer Kontrolle die Reaktionstemperatur bis auf 40 °C. Man erhielt zwei Reaktionsprodukte, deren säulenchromatographische Trennung auf Kieselgel keinerlei Schwierigkeiten bereitete. Die ¹H-NMR-spektroskopische Analyse der so in 9.4% Ausbeute erhaltenen Substanzen wies diese eindeutig als die gewünschten 2-Alkenylsulfoximide **338aA** ($R_F = 0.33$, E/P = 1:l) und **338aB** ($R_F = 0.26$) aus (Abb. 11). Die zum hexavalenten Schwefel α -ständige Methylengruppe ist in charakteristischer Weise zu tiefem Feld verschoben und erscheint als das erwartete 32-Linien-Signal bei $\delta = 3.85$ ppm und 3.77 ppm. Diese Angaben beziehen sich auf das polarere Epimere **338aB** und gelten sinngemäß auch für das andere Isomere. Da die mit 9.4% erzielte Ausbeute nicht befriedigte, versuchte man, durch Verwendung von Allyllithium (Grignardverbindungen reduzieren Sulfonimidoylhalogenide zu Sulfinamiden^{59,137e}) zu besseren Umsätzen zu kommen (Schema 97).

-131-

Asym. d³-Synthone

Dazu wurde das bekannte Allyltributylstannan¹⁴³⁾ **367** mit *n*-BuLi bei -78 °C zu Allyllithium transmetalliert^{143b)} und mit 0.5 Äquivalenten der Sulfonimidoylfluoride **337aAB** bei dieser Temp. zur Reaktion gebracht. Nach wäßriger Aufarbeitung wurden säulenchromatographisch beide diastereomeren Sulfoximide **338aA** und **338aB** im Verhältnis 1:1 mit einer Gesamtausbeute von 52% isoliert.

Zum Studium der Eigenschaften der so erstmals in enantiomerenreiner Form synthetisierten *S*-Allylsulfoximide **338aA** und **338aB** deprotonierte man das polarere Diastereomere **338aB** mit *n*-BuLi bei -78 °C, titanierte die entstandene carbanionische Spezies mit Chlor[tris(diethyl-amino)]titan⁹⁸⁾ bei dieser Temp. und fügte dann 2,2-Dimethylpropanal hinzu (Schema 98).

Die dünnschichtchromatographische Analyse des Reaktionsgemisches zeigte bereits nach einer Reaktionsdauer von 5 min den vollständigen Verbrauch des Substrates und die Entstehung zweier neuer Produkte an. Nach salzsaurer Aufarbeitung und säulenchromatographischer Trennung wurden diese mit 14% bzw. 25% Ausbeute als farblose Öle isoliert (Schema 98). Das CI-Massenspektrum (Isobutan) des polareren Produktes 368 weist den Basispeak bei m/e = 370auf, während das [M+1]⁺-Signal bei m/e = 386 erscheint. Da dem Ausgangssulfoximid eine molare Masse von 299 zukommt, scheint es tatsächlich zu der gewünschten Addition des Aldehydes (m/e = 86) gekommen zu sein. Dies wird auch durch die Analyse des 300-MHz-¹H-NMRSpektrums bestätigt, indem man die Protonen der *tert*-Butylgruppe bei $\delta = 0.86$ ppm findet. Erfreulicherweise läßt sich darüberhinaus aus dem Spektrum die ausschließliche Bildung des y-hydroxyalkylierten Produktes mit einer einheitlich E-konfigurierten Doppelbindung ableiten. Dabei beobachtet man die Resonanz des 1-H erwartungsgemäß bei recht tiefem Feld $(\delta = 6.24 \text{ ppm})$ mit einer Kopplungskonstante von ${}^{3}J = 15 \text{ Hz zum vicinalen Olefinproton}$, welches bemerkenswerterweise bei noch tieferem Feld ($\delta = 6.82$ ppm) absorbiert. Das Ausmaß der asymmetrischen Induktion auf das neuentstandene Chiralitätszentrum an C-4 ist allerdings nur verschwindend gering. Alle im ¹H-NMR-Spektrum auftretenden Signalgruppen sind bis auf diejenigen der tert-Butylgruppe und des H-2 verdoppelt. Interessanterweise verschwindet diese zufällige Isochronie der genannten Protonen nach D₂O-Austausch.

Setzte man statt **338aB** das unpolarere Diastereomere **338aA** ein und führte die Transmetallierung mit Chlortris(isopropoxy)titan bei 0 °C (30 min) aus, erhielt man das γ -Hydroxysulfoximid **370** als nahezu diastereomerenreines (97% ds) Enantiomer ($[\alpha]^{20}_{D}$ = -127.1, c = 1.55, Dichlormethan) (Abb. 12).

Im Gegensatz zu den γ-Hydroxysulfoximiden 368AB ist die Doppelbindung in 370

Z-konfiguriert. Aus diesen Befunden schließt man, daß die Transmetallierung erst bei erhöhter Temperatur stattfindet und somit die epimeren Hydroxysulfoximide **370AB** über einen sechsgliedrigen Übergangszustand **ÜZ-Li** mit pseudoäquatorialer Lage und die stereochemisch einheitliche Verbindung **370** über einen solchen mit pseudoaxialer Lage der Sulfonimidoyl-Gruppe (**ÜZ-Ti**) gebildet wird (Schema 98).

Dabei ist die in **370** beobachtete Z-Konfiguration der Doppelbindung eine Konsequenz dieser durch das Titan bewirkten pseudoaxialen Stellung der Sulfonimidoyl-Gruppe im Übergangszustand.

Wie aus Schema 98 ersichtlich, wurde außer dem oben diskutierten γ -Addukt noch ein weiteres Produkt der Umsetzung isoliert (14% Ausbeute). Aus dem im CI-MS (Isobutan) bei m/e = 368 auftretenden [M+1]⁺-Peak errechnet sich eine Massendifferenz von 18 mu zu den bereits charakterisierten γ -Hydroxysulfoximiden **368AB**, woraus man auf die Eliminierung eines Wassermoleküls schloß und so die Dienstruktur **369** ableitete. Der Basispeak des Spektrums wird durch das stabile Kation [M-CH₃]⁺ verursacht. Aus dem 300-MHz⁻¹H-NMR-Spektrum wurde das Vorliegen von **369** als diastereomerenreines, all-*trans*-konfiguriertes Dienylsulfoximid abgeleitet. Dabei weist das 2-H den für Diensysteme charakteristischen, starken Tieffeldshift (δ = 7.05 ppm) auf.

Die Vicinalkopplungskonstanten der olefinischen Protonen betragen ${}^{3}J_{1,2} = 14.6$ Hz bzw. ${}^{3}J_{3,4} = 15.5$ Hz, woraus deren *trans*-Substitution folgt. Obwohl das Dien bereits während der Reaktion dünnschichtchromatographisch nachweisbar war, erscheint es möglich, daß es infolge der salzsauren Aufarbeitung zu einer Anreicherung durch Dehydratisierung des γ -Adduktes gekommen ist.

Trotz dieses Nebenproduktes bleibt festzuhalten, daß das Allylsulfoximid **338A** ($R_F = 0.33$) nach Deprotonierung hochregioselektiv als Syntheseäquivalent eines d³-Synthons Aldehyde in der 3-Position unter Bildung einheitlich konfigurierter, enantiomerenreiner 1-Sulfonimidoyl-1-alken-4-ole addiert.

Ermutigt durch die mit den Allylsulfoximiden **338aA/B** erzielten Ergebnissen plante man die Synthese der Sulfoximide **338bA/B** und **338cA/B**, die durch ihre Sauerstoff-Funktionen am Stickstoff durch Komplexierung das Titan im Transmetallierungsschritt sicherlich besser lenken können und damit zu höherer diastereofacialer Selektivität Anlaß geben sollten (Schema 99).

Zur Synthese von **338bA/B** benötigte man enantiomerenreines (-)-Menthylcarbamat **334b**, dessen Synthese in der Literatur stets unter Verwendung von Phosgen beschrieben wird¹⁴⁴⁾. In Anlehnung an Arbeiten von *Davis* und *Laue*¹⁴⁵⁾, die *n*-Butylcarbamat durch Zusammenschmelzen des betreffenden Alkohols mit Harnstoff erhielten, brachte man Menthol mit einem Überschuß Harnstoff bei 180-200 °C unter Ammoniakentwicklung zur Reaktion. Zur Entfernung des Harnstoffes wurde das Reaktionsgemisch mit einer Mischung aus heißem Essigester und Wasser

aufgearbeitet. Dabei konnten je nach Reaktionsdauer und Temperatur zwischen 63% und 75% des Carbamates isoliert werden, das nach gaschromatographischer Analyse mit ca. 5% (-)-Menthol verunreinigt ist, aber mit $[\alpha]^{20}_{D} = -84.7$ (c = 1.11, CHCl₃) dem in der Literatur^{144b} angegebenen Drehwert von $[\alpha]^{20}_{D} = -85.2$ (c = 1.0, CHCl₃) bereits recht nahe kommt. Im CI-Massenspektrum (Isobutan) von **334b** beobachtet man neben dem $[M+1]^+$ -Peak bei m/e = 200 zusätzlich denjenigen des Dimeren (**334b**)₂ bei m/e = 399, welches auf eine gewisse Stabilität desselben hindeutet (Schema 100).

Im ¹³C-NMR-Spektrum zeigt der Carbonylkohlenstoff eine für Carbamate charakteristische Verschiebung von δ = 157.04 ppm, während die Amidprotonen im ¹H-NMR-Spektrum als breites Singulett bei δ = 4.6 ppm erscheinen. Besonders auffällig ist jedoch das IR-Spektrum, in dem vier intensive Banden zwischen 3205 und 3440 cm-¹

im Bereich der N-H-Valenzschwingungen zu beobachten sind.

Zur Synthese der Fluoride 337bAB (Schema 96) synthetisierte man zunächst die epimeren Sulfinylcarbamate 335bAB, welche, wie bereits von Cram⁸⁴⁾ beschrieben, mit tert-Butylhypochlorit in die N-Menthyloxycarbonylsulfonimidoylchloride 336bAB überführt wurden. Nach Fluorierung mit Kaliumfluorid in Acetonitril konnten die Sulfonimidovlfluoride 337bAB als weiße Festkörper isoliert werden. Infolge der Zersetzlichkeit der Sulfinylcarbamate 335bAB⁸⁴⁾ beträgt die Ausbeute an Fluorid in diesem Falle lediglich 33%. Durch fraktionierte Kristallisation aus Hexan gelingt es, bereits nach einmaliger Anwendung dieser Operation ein scharf schmelzendes Präparat zu erhalten, welches laut ¹H-NMR-Spektrum maximal 10% des anderen Diastereomeren enthält. Die Verschiebungsdifferenz der meta- und ortho-Protonen ist mit $\Delta \delta_{0,m} = 0.6$ ppm auch für hexavalente Schwefelverbindungen ungewöhnlich groß. Das Signal des Methinprotons am Carbinolzentrum erscheint als Triplett von Dubletts bei $\delta = 4.65$ ppm. In der ¹⁹F-Kernresonanz absorbieren die Fluorkerne der Diastereomeren bei $\delta = 68.41$ und $\delta = 68.39$ ppm jeweils als Singulett, während die ¹³C-NMR-Spektren der Epimeren nahezu deckungsgleich sind. In einer der Darstellung der Allylsulfoximide 338aA/B (Schema 97) analogen Umsetzung von 846bAB mit Allyllithium gelangte man zu den diastereomeren S-Allyl-N-menthyloxycarbonylsulfoximiden 338bAB im Verhältnis 11:10 (Ausbeute 33%), die sich jedoch flüssigkeitschromatographisch an Kieselgel als nur schwer trennbar erwiesen (Schema 99).

-135-

In der Hoffnung auf eine einfachere Epimerentrennung nahm man die Synthese der Sulfoximide **338cA/B** in Angriff (Schema 101).

Die Sulfinamide **335cAB** (s. Abschnitt **I 2**) wurden nach bekanntem Muster mit *tert*-Butylhypochlorit oxidativ chloriert und die epimeren Chloride **336cAB** mit Kaliumfluorid umgesetzt. Dabei wurde dünnschichtchromatographisch eine quantitative Umsetzung zu zwei neuen Produkten registriert. Das zunächst erhaltene Öl ließ sich in Ether zur Kristallisation bringen; dabei fiel ein dünnschichtchromatographisch einheitlicher, weißer Festkörper an, dessen Reinheit auch durch Analyse der ¹H-NMR-und ¹³C-NMR-Spektren bestätigt werden konnte. Da diese jedoch auch die Abwesenheit der Trimethylsilylgruppe anzeigten und im IR-Spektrum eine Bande bei 3500 cm-¹ beobachtet wurde, ordnete man der neuen Substanz zunächst die Struktur des Hydroxysulfonimidoylfluorides **371** zu (Schema 102).

Ein unter CI-Bedingungen (Isobutan) aufgenommenes Massenspektrum ergab eine

bei 3500 cm-¹ im IR-Spektrum der Verbindung beobachtete Bande muß auf die Verwendung wasserhaltigen Kaliumbromids zurückgeführt werden), welches durch fluoridinduzierte Cyclisierung aus einem der diastereomeren Sulfonimidoylchloride **336cA** oder **336cB** hervorgeht. Die angegebene *cis*-Konfiguration leitet man dabei aus der im Vergleich zu **375** für dieses Diastereomere beobachteten, großen Verschiebungsdifferenz ($\Delta \delta = 0.25$) der diastereotopen Methylgruppen der Isopropylgruppe ab. Infolge des Anisotropieeffektes des Aromaten ist die relative chemische Verschiebung der Methylgruppen im *cis*-konfigurierten Epimeren **372** ($\delta = 1,17$ ppm und $\delta = 0,95$ ppm) in wesentlich stärkerem Ausmaß von der Vorzugskonformation der Isopropylgruppe abhängig als im *trans*-Isomeren **375**

 $(\delta = 1,11 \text{ ppm bzw. } \delta = 0.96 \text{ ppm})$, Vermutlich befindet sich in **372** eine Methylgruppe im Bereich des zum äußeren Magnetfeld antiparallel gerichteten Zusatzfeldes ($\delta = 0.95 \text{ ppm}$), während sich die andere entweder außerhalb desselben oder im Bereich des parallel gerichteten Feldes aufhält ($\delta = 1.17 \text{ ppm}$). Neben den die Konstitution und Konfiguration des Heterocyclus' betreffenden Kernresonanzdaten bestätigt eine korrekte Elementaranalyse Bruttozusammensetzung und Reinheit von **372**. Das Epimere **375** (R_F = 0.43) wurde nicht rein isoliert.

Insgesamt zeigt dieses Ergebnis einen bislang nicht beschriebenen, bequemen Zugang zu Sulfonimidoaten auf. Anders als die bei den literaturbekannten Verfahren⁸³⁾ entstehenden Salze, ist hier das Nebenprodukt Chlortrimethylsilan leicht im Vakuum zu entfernen. Da keine Alkalialkoholate eingesetzt werden, dürfte sich die Methode zur Synthese basenlabiler Sulfonimidoate empfehlen. Inwieweit sie den oben geäußerten Erwartungen gerecht werden kann und welche präparativen Anwendungen sich für das cyclische Imidoat **372** selbst finden lassen, muß zukünftigen Untersuchungen vorbehalten bleiben.

molare Masse von 239; ein Wert, der auch durch ein FAB-MS (3-Nitrobenzylalkohol) bestätigt werden konnte (in beiden Spektren tritt der $[M+1]^+$ -Peak als Basispeak auf). Daraus leitete man für die neue Verbindung die im Schema 102 angegebene Struktur des diastereomerenreinen, cyclischen Sulfonimidoates **372** ab ($R_F = 0.37$, E/P = 1:1; die

-138-

K Zusammenfassung und Ausblick

1. Am Beispiel des Sulfonylcarbamates 46 wurde ein Verfahren zur Synthese α -oxysubstituierter Sulfone durch Deprotonierung des Carbamats 39 und nachfolgende elektrophile Sulfonylierung mit *p*-Toluolsulfonsäurefluorid entwickelt (Schema 103).

Das lithiierte Sulfon **57** reagiert mit Carbonylverbindungen mit 45-59% Ausbeute zu den Enonen **123**, die bei Verwendung der enantiomerenreinen (*S*)-Lactaldehyde (*S*)-**9** und (*S*)-**62** als enantiomerenreine Diastereomere **63** und **64** anfallen (Schema 104).

Der Zusatz von Tetra(isopropoxy)titan (TIPT) bewirkt keinen Metallaustausch, sondern führt lediglich zu einer geringfügigen Steigerung der Ausbeute.

Ein Vergleich mit bereits literaturbekannten Verfahren weist die vorgestellte Reaktionssequenz als die erste Methode zur asymmetrischen nukleophilen Acylierung α , β -ungesättigter Carbonylverbindungen aus.

3. Nach Transmetallierung von **57** mit Chlortris(isopropoxy)titan (CITiO) werden Aldehyde hoch regio- und diastereoselektiv in Ausbeuten zwischen 54% und 85% zu den (*E*)-anti-4-Hydroxy-l-(*p*-toluolsulfonyl)-1-alkenylcarbamaten **18** umgesetzt (Schema 105).

Die konfigurative Stabilität der titanierten Zwischenstufe **65** konnte durch Analyse ihres Verhaltens gegenüber dem enantiomerenreinen und racemischen Lactaldehyd (S)-**62** und *rac*-**62** gezeigt werden (Abschnitt **E 3**).

Die Reduktion des 4-Hydroxy-1-sulfonyl-1-alkenylcarbamates **68** mit Lithiumaluminiumhydrid führt in Abhängigkeit von der angewendeten Menge an Reduktionsmittel entweder mit 88% Ausbeute zum Diol **280** oder unter Hydrierung der 1,2-Doppelbindung zum gesättigten Sulfonvlcarbamat 284 (Schema 106).

Versuche zur intramolekularen *Michael*-Addition mit den *O*-acylierten Derivaten **288**, **308** und **300** scheiterten an der mangelnden Reaktivität der trisubstituierten, capto-dativ stabilisierten Doppelbindung (Schema 107).

Das ω -Chlorbutyrat **300** geht unter den angewandten basischen Bedingungen unter 1,3-Eliminierung mit 66% Ausbeute in den Cyclopropancarbonsäureester **303** über. Erfolglos verliefen die Versuche zur radikalischen Cyclisierung des Brommethylsilylethers **315** und die Addition von Vinylcupraten an den Silylether **311**.

Zusammenfassung

4. Als optisch aktive Metall-Liganden wurden die β -Hydroxysulfoximide 246 und 247, sowie die Bissulfoximide 200 und 238 synthetisiert (Schema 108), in denen das tetra-koordinierte Schwefelatom als stereogenes Zentrum genutzt wird.

Als gemeinsame Quelle der S-Chiralität dient das kommerziell erhältliche bzw. leicht aus (-)-Menthol zugängliche (-)-(S)-Menthyl-(p-toluolsulfinat) **38**, dessen stereospezifische Reaktion mit *Grignard*-Reagenzien^{26,62,63}, zu den enantiomerenreinen Sulfoxiden **142** und **143** führt. Diese lassen sich stereospezifisch in die Sulfoximide **168** und **210** überführen⁵⁸⁾ (vergl. Abschnitt **F 4**), aus denen die optisch aktiven, *N*-substituierten Sulfoximide **201**, **213** und **211** zugänglich sind (Schema 109).

Die β -Hydroxysulfoximide **246** und **247** (Schema 108) erhält man schließlich in einer fünf Stufen umfassenden Gesamtausbeute von 68% bzw. 27% nach Hydroxyalkylierung der Sulfoximide **213** bzw. **201** und nachfolgender Silylierung, Ebenfalls in fünf Stufen (36-43%) gelangt man zum C₂-symmetrischen Liganden **200** nach oxidativer Kupplung des lithiierten Sulfoximids **201** mit Kupfer(II)-chlorid und anschließender Entfernung der BOC-Schutzgruppen (Abschnitt **F 4**)

Der C_2 -symmetrische, tridentale Ligand **238** schließlich ist über den Ester **227** bzw. den aus diesem durch DIBAH-Reduktion erhältlichen Aldehyd **236** in einer sechs-

stufigen Synthesesequenz mit einer Gesamtausbeute von 30% erhältlich (Schema 110). Im Rahmen der erfolglosen Versuche, die Methylenbissulfoximide **135** und **134** zu synthetisieren (Abschnitt **F 3**), entwickelte man eine mit hohen Ausbeuten und epimerisierungsfrei verlaufende Kupplungsreaktion, die zu geminalen Bissulfoxiden (**141**), Sulfmylsulfoximiden (**170**) und Bissulfoximiden (**197**) führt (Schema 111).

Lediglich bei Verwendung der nur schwach elektrophilen Sulfonimidoyfluoride sinken die Ausbeuten stark ab. Sowohl das so hergestellte Bissulfoximid **197**, als auch das durch Reaktion des Bissulfoxides **141** mit *N*-Aminophthalimid in Gegenwart von Blei(IV)-acetat zugängliche Derivat **181**, stellen dabei die ersten Vertreter der bislang

literaturunbekannten Stoffklasse optisch aktiver, geminaler Bissulfoximide dar.

5. Die Umsetzungen der oben beschriebenen chiralen Liganden mit Titantetrachlorid führte zwar zu optisch aktiven Produkten, die jedoch mit Ausnahme der Titanverbindungen 269^{109} und 270^{109} nicht als die gewünschten Monomeren identifizierbar waren (Schema 112; Abschnitt G).

Mit **269** und **270** liegen die ersten, voll charakterisierten, enantiomerenreinen Chlorotitanverbindungen ohne stabilisierenden Cyclopentadienylliganden vor.

6. Mit Hilfe der in Schema 113 dargestellten Modellreaktion prüfte man das Ausmaß der mit den Titanreagenzien erzielbaren Transmetallierung sowie die dabei zu erreichende Regio- und Stereoselektivität (Abschnitt G 3).

Bedingt durch die Abhängigkeit der Konstitution des Endproduktes der Reaktion von der Art der metallorganischen Zwischenstufe (vergl. Abschnitt E 2), läßt sich der Gehalt an Enon 59 im Reaktionsgemisch mit der Fähigkeit des jeweils getesteten Reagenzes zur Transtitanierung korrelieren. Die besten Ergebnisse erzielte man dabei mit den Sulfoximiden 274 (vollständiger Metallaustausch, 30% (*E*)-anti-68, Kapitel G 3) und 269 (vollständiger Metallaustausch, 34% (*E*)-anti-68, 4% ee, bzw. 16% *E-anti-*68, 16% ee).

7. Zur Abschätzung der Anwendbarkeit optisch aktiver, tetrakoordinierter Schwefelverbindungen als asymmetrische d³-Bausteine wurden das *N*-Allylsulfoximid **327**, das *N*-Allylsulfonimidamid **348** sowie die *S*-Allylsulfoximide **338aA** und **338aB** in enantiomerenreiner Form synthetisiert (Schema 114).

Die Synthese des Sulfonimidoates **343** scheiterte an dessen hoher Neigung zur Eliminierung und die des *tert*-Butylsulfonimidamides **352** am unerwarteten Verlauf des Oxidationsschrittes mit *tert*-Butylhypochlorit (vergl. Abschnitt **I 4**).

Im Zuge des letztgenannten Projektes konnten jedoch erstmals rein aliphatische Sulfinamide in enantiomerenreiner Form dargestellt werden. Die öligen Diastereomeren $354A^{32}$ und $354B^{32}$ lassen sich dabei aufgrund ihres großen Polaritätsunterschiedes leicht chromatographisch trennen.

Optisch aktive Sulfinamide sind wichtige Ausgangsmaterialien nicht nur zur Synthese optisch aktiver, hexavalenter Schwefelverbindungen durch Oxidation mit *tert*-Butyl-

hypochlorit⁸³⁾, sondern auch zur Darstellung enantiomer angereicherter Sulfinsäureester^{64b)}.

Sowohl die oben beschriebenen, als auch die ebenfalls im Rahmen vorliegender Arbeit in enantiomerenreiner Form synthetisierten, aromatischen Sulfinamide **345A/B**³²⁾, sind somit potente Substrate zur Synthese optisch reiner Sulfinate, die ihrerseits zur stereospezifischen Synthese entsprechender Sulfoxide eingesetzt werden können¹⁴⁹⁾.

Von besonderem Interesse ist dies für rein aliphatisch substituierte Sulfoxide, für die es mit Ausnahme der Methode von *Wudl* und Lee^{149} bislang kein allgemein anwendbares, enantioselektives Syntheseverfahren gab.

Die Metallierung des *N*-Allylsulfoximids **327** und anschließende Reaktion mit 2-Methylpropanal führt nicht zum erwarteten γ -Addukt **374**, sondern zum optisch aktiven Benzylalkohol **329AB**³²⁾ mit einer Diastereoselektivität von 92% ds (Schema 115).

Die Sulfoximideinheit übernimmt also die Rolle einer chiralen "directed metalation group"¹³⁸), wie sie bislang in der Literatur nicht beschrieben ist. Von besonderer Attraktivität zur weiteren Verbesserung der Stereoselektivität ist dabei die unproblematische Variation des *N*-ständigen Substituenten.

Während die Reaktion des Sulfonimidamides **348** mit 2-Methylpropanal sehr uneinheitlich verläuft (vergl. Abschnitt **I 3**), findet im Falle des *S*-Allylsulfoximids **338aA** nach Transmetallierung mit Chlortri(isopropoxy)titan (CITiO) der gewünschte γ -Angriff statt (Schema 116; vergl. Abschnitt **I 5**).

Der optisch aktive Alkohol 370 fällt dabei als enantiomerenreines Diastereomer (97%

ds) mit (Z)-konfigurierter 1,2-Doppelbindung an.

8. Die fluoridinduzierte Cyclisierung der epimeren Sulfonimidoylchloride **336cAB** eröffnet einen bequemen Zugang zu den bislang nicht beschriebenen cyclischen Sulfonimidoaten **372** und **375**, die durch einfache Kristallisation leicht in die enantiomerenreinen Diastereomeren aufgetrennt werden können (Schema 102).

Durch Analyse der ¹H-NMR-Spektren der Diastereomeren konnte für das kristalline Epimere **372** die angegebene Konfiguration wahrscheinlich gemacht werden.

EXPERIMENTELLER TEIL

-147-

Allgemeines

L Allgemeines

Die Spektren wurden auf folgenden Geräten aufgenommen:

IR: Infrarotspektrometer 283 B der Fa. Bodenseewerk Perkin-Elmer & Co, GmbH, Überlingen.

¹**H-NMR:** NMR-Spektrometer EM 360 und EM 390 der Fa. Varian Associated, Palo Alto, Kalifornien (USA) und Supraleitendes Multikernresonanzspektrometer AM 300 der Fa. Bruker, Analytische Meßtechnik, Karlsruhe.

¹³C-NMR: Supraleitendes Multikernresonanzspektrometer AM 300 der Fa. Bruker.

MS: Massenspektrometer Finnigan MAT 8230 der Fa. Finnigan, Bremen.

Die NMR-Spektren wurden, wenn nicht anders vermerkt, in CDCl₃ aufgenommen. Die chemischen Verschiebungen sind in δ-Werten (ppm) angegeben und beziehen sich auf Tetramethylsilan (TMS) als inneren Standard. Die AB-Resonanzlinien sind, wenn nicht anders vermerkt, direkt den Spektren entnommen und unkorrigiert. Für die NMR-Signale wurden folgende Abkürzungen verwendet: s (Singulett), d (Dublett), t (Triplett), q (Quartett), m (Multiplett).

Die Schmelzpunkte wurden mit einem Schmelzpunktbestimmungsapparat nach Dr. Tottoli der Fa. W. Büchi/Flavil (Schweiz) bestimmt und sind unkorrigiert.

Die Elementaranalysen führte das Mikroanalytische Laboratorium Beller, Göttingen, und das Institut für Anorganische Chemie der Universität Kiel aus.

Die Drehwerte wurden mit dem Polarimeter 241 der Fa. Perkin-Elmer in 1 dm-Küvetten bestimmt.

-149-

Ausgangsverbindungen

Für die qualitative Dünnschichtchromatographie (DC) wurden Fertigfolien Sil G/UV₂₅₄ der Fa. Macherey, Nagel & Co., Düren, verwendet.

Die Umsetzungen luft- und feuchtigkeitsempfindlicher Substanzen wurden in destillierten und getrockneten Lösungsmitteln unter Argon durchgeführt.

Ether und Tetrahydrofuran wurden unter Argon kontinuierlich über Lithiumaluminiumhydrid destilliert. Dichlormethan, Pyridin, N,N-Diisopropylamin, Triethylamin und N,N,N',N'-Tetramethylethylendiamin (TMEDA) wurden über Calciumhydrid, Methanol über Magnesium und n-Hexan über Lithiumaluminiumhydrid unter Rückfluß erhitzt und destilliert.

Der Gehalt von *n*-Butyllithium (*n*-BuLi) in *n*-Hexan wurde durch einfache acidimetrische Titration bestimmt.

Die kapillargaschromatographische Analyse von Diastereomeren- bzw. Produktgemischen erfolgte auf einem Gaschromatographen Modell GC-14A (Integrator C-R4A) der Fa. Shimadzu, Japan:

Säule : Quarzsäule CP Sil 5 CB der Fa. Chrompack, Müllheim (50 m, $0.22 \mu m$ Innen-Ø, $0.14 \mu m$ Filmdicke der kovalent gebundenen stationären Phase).

Trägergas: H₂, Injektortemperatur: 280 °C, Detektortemperatur: 280 °C, Vordruck: 3.5 kg/cm², Säulendruck: 2.2 kg/cm².

Man verwendete folgende Abkürzungen:

AIBN (Azobisisobutyronitril), *n*-BuLi (*n*-Butyllithium), BOC (*tert*-Butyloxycarbonyl), CITiO [Chlortri(isopropoxy)titan], CITiN [Chlortris(diethylamino)titan], DIBAH (Diisobutylaluminiumhydrid), DMAP (*N*,*N*-Dimethylaminopyridin), EE (Essigsäureethylester), E (Ether), LDA (Lithiumdiisopropylamid), LHMDS (Lithiumhexamethyldisilazan), MSH [*O*-(2,4,6-Trimethylphenylsulfonyl)hydroxylamin], P (Pentan), THF (Tetrahydrofuran), TIPT (Tetraisopropoxytitan), TFA (Trifluoressigsäure), TMEDA (*N*,*N*,*N'N'*-Tetramethylethylendiamin), Eu(hfc)₃ <Tris-[3-(heptafluorpropylhydroxymethylen)-d-camphorato]-europium>.

M Darstellung der Ausgangsverbindungen

M 1 Darstellung der Titanreagenzien

M 1.1 Tetraisopropoxytitan (TIPT)

TIPT wurde von der Fa. Ventron, Karlsruhe, bezogen und vor Gebrauch i. Vak. unter Feuchtigkeitsausschluß destilliert. Sdp. 62-63 °C/1 Torr.

M 1.2 Chlortri(isopropoxy)titan (CITiO)

CITiO wurde nach Lit.³³⁾ hergestellt und als 2.2 molale Lösung in *n*-Hexan eingesetzt.

M 1.3 Chlortris(diethylamino)titan (CITiN)

ClTiN wurde nach der von *M. Reet* z^{98b} angegebenen Vorschrift hergestellt. Sdp. 110 °C/7x10-³ Torr.

M 2 (S)-2-Benzyloxypropanal ((S)-62)),

wurde nach Lit.³⁶⁾ mit 78% Ausbeute synthetisiert. $R_F = 0.55 (E/P = 1:1)$; $[\alpha]^{20}_{D}$ = -62.4 (neat). Die spektroskopischen Daten stimmen mit denen in Lit.³⁶⁾ angegebenen überein.

M 3 (S)-2-(tert-Butyldimethylsilyloxy)propanal ((S-62)),

wurde nach Lit^{35a)} in 69% Ausbeute synthetisiert.

-150-

$$\begin{split} R_F &= 0.60 \; (E/P = 1:1); \; [\alpha]_{D}^{20} = -13.2 \; (neat). \end{split}$$
 Die spektroskopischen Daten stimmen mit denen in Lit.^{35a)} angegebenen überein.

M 4 p-Toluolsulfonsäurefluorid (48)³⁰⁾

40.0 g (0.20 mol) *p*-Toluolsulfonsäurechlorid wurden mit 40 mL (0.50 mol) einer 73proz. wäßrigen Kaliumfluoridlsg. versetzt und 1 h unter Rückfluß erhitzt. Nach dem Abkühlen goß man das Reaktionsgemisch auf je 100 mL Ether und Wasser, trennte die organische Phase ab, extrahierte die wäßrige dreimal mit je 100 mL Ether, trocknete über Magnesiumsulfat, zog das Solvens i. Vak. ab und destillierte. Man erhielt 24.7 g (71%) **629** als weißen Festkörper vom Sdp.: 127 °C/15 Torr und vom Schmp. 41 °C (Hexan, Lit. 41-42 °C).

M 5 tert-Butylhypochlorit¹⁴⁶⁾

Zu 250 mL (0.34 mol) einer auf 10 °C gekühlten 10% wäßrigen Natriumhypochloritlsg. fügte man unter starkem Rühren mit einem KPG-Rührer eine Lösung von 37 mL (0.39 mol) *tert*-Butanol in 24.5 mL (0.43 mol) Eisessig in einer Portion hinzu, wobei die Temperatur um ca. 5 °C anstieg. Nach 3 min überführte man die Reaktionsmischung in einen 500mL-Scheidetrichter, separierte die obere, ölige Phase, wusch diese mit jeweils 50 mL 10% Kaliumcarbonatlsg. und Wasser, trocknete 1 min über Calciumchlorid, filtrierte und bewahrte die gelbe Flüssigkeit in einer braunen Flasche bei 5 °C auf. Die Ausbeute betrug 32 g (87%) (Lit. 70-80%).

Anmerkungen:

 a) Abweichend von der Literaturvorschrift wurde statt handelsüblicher Chlorbleichlauge, dessen Gehalt an Natriumhypochlorit stark schwankt, die kommerziell erhältliche (Fa. Janssen, Nettetal) 10proz. Lösung eingesetzt.

b) Arbeiten mit *tert*-Butylhypochlorit sollten in einem abgedunkelten, gut ziehenden

Abzug durchgeführt werden. Wegen der heftigen Reaktion der Substanz mit Gummi^{146b)} ist jeglicher Kontakt mit diesem zu vermeiden (keine Septen verwenden!).

M 6 O-(2,4,6-Trimethylphenylsulfonyl)acethydroxamsäureethylester,

wurde entweder von der Firma Fluka bezogen oder gemäß Lit.66b) hergestellt.

M 7 O-(2,4,6-Trimethylphenylsulfonyl)hydroxylamin (MSH)^{58,66a)}

10.0 g (35.1 mmol) O-(2,4,6-Trimethylphenylsulfonyl)acethydroxamsäureethylester wurden bei ca. 30 °C in 6.7 mL Dioxan gelöst, auf 0 °C gekühlt und unter heftigem Rühren zügig mit 4.2 mL 70proz. Perchlorsäure versetzt. Man rührte 5 min nach (dabei erstarrte die Mischung zu einer unrührbaren Masse), durchmischte den Kolbeninhalt weitere 5 min mit einem Spatel, überführte die Reaktionsmischung in 300 mL Eiswasser, rührte 10 min, saugte ab, wusch zweimal mit jeweils 50 mL Eiswasser und überführte den Rückstand in einen 50 mL Scheidetrichter. Man löste das rohe MSH in 30 mL Ether, behandelte die Lösung 30 s mit 1-2 g Kaliumcarbonat, saugte rasch ab und goß in 300 mL eiskaltes *n*-Pentan. Der dabei entstehende, feinkristalline Niederschlag wurde abgesaugt, 5 min i. Vak. getrocknet und sofort eingesetzt; Ausbeute: 5.30 g (70%, Lit.⁸⁾ keine Angaben).

<u>Anmerkung:</u> Die gemäß obiger Vorschrift hergestellte, wasserfreie Substanz ist nur kurzfristig haltbar und neigt zu spontaner Zersetzung unter Verpuffung^{66c)}. Es wird empfohlen die angegebenen Mengen nicht zu überschreiten.

M 8 p-Toluolthiosulfonsäure-S-ester (50),

wurde gemäß Lit. $^{28)}$ mit 80% Ausbeute als weißer Festkörper vom Schmp. 75 $^{\circ}\mathrm{C}$ erhalten.

M 9 $(S_{s},1R,3R,4S)$ -*p*-Toluolsulfinsäurementhylester (38)²⁶⁾ und $(R_{s},1S,3S,4R)$ *p*-Toluolsulfinsäurementhylester (*ent*-38)

246 g (150 mL, 2.1 mol) Thionylchlorid wurden auf 0 °C gekühlt und unter intensivem Rühren portionsweise innerhalb einer Stunde mit 100 g (0.56 mol) wasserfreiem Natrium*p*-toluolsulfinat versetzt, wobei man nach Zugabe von etwa 75% der angegebenen Sulfmatmenge die Mischung durch Addition von 60 mL Benzol rührfähig hielt. Man rührte 90 min nach, überführte die Reaktionsmischung mit Hilfe von 200 mL Benzol in einen 1000mL-Birnenkolben, entfernte überschüssiges Thionylchlorid und das Solvens i. Vak., wiederholte diese Prozedur 3 weitere Male mit jeweils 150 mL Benzol, nahm dann in 300 mL trockenem Ether auf (es ist nicht notwendig, das dabei ausfallende Kochsalz abzufiltrieren), kühlte auf 0 °C ab und ließ innerhalb von zwei Minuten eine Lösung von 62.6 g (0.40 mol) (-)-Menthol in 50 mL trockenem Pyridin hinzufließen. Anschließend entfernte man das Kühlbad und rührte 16 h bei Raumtemp. nach.

Zur Aufarbeitung goß man die Reaktionsmischung auf 100 g Eis und 200 mL Ether, trennte die Phasen, extrahierte die wäßrige einmal mit 150 mL Ether, wusch die vereinigten organischen Phasen dreimal mit jeweils 100 mL 5 N Salzsäure und einmal mit 100 mL ges. Natriumhydrogencarbonatlsg.. Nachdem man über Magnesiumsulfat getrocknet hatte erhielt man nach Entfernung des Solvens i. Vak. ca. 110g (94%) rohes **38** als weißen Kristallbrei, der mit 1.2 Volumenteilen Aceton zur Kristallisation gebracht wurde (-20 °C). Nachdem man so eine erste Charge gewonnen hatte, entfernte man das Solvens erneut i. Vak., rührte den öligen Rückstand nach Zugabe von 2 mL konz. Salzsäure 1 h bei Raumtemp. und brachte erneut mit Aceton zur Kristallisation. Abweichend von den Angaben in Lit. ²⁶⁾ wusch man den nach dem Absaugen erhaltenen Kristallkuchen mit 50 mL auf -20 °C gekühltem Hexan, wodurch das ölige Diastereomere weitgehend abgetrennt werden konnte. Nach viermaliger Wiederholung dieses Vorganges erhielt man nach Rekristallisation der vereinigten Chargen zwischen 70 und 80 g (ca. 65%, Lit. ^{26b)} 80%) diastereomerenreines **38** (kapillargaschromatographisch bestimmt) als weißen Festkörper vom Schmp. 109 °C (Aceton, Lit. ^{26b)} 110 °C).

-153-

Ausgangsverbindungen

 $[\alpha]^{20}_{D}$ = -202.8 (c = 1.1 Aceton), Lit. ^{26b)} -202.0 (c = 2.0 Aceton)

 $R_t = 7.65 \text{ min} (200 \degree \text{C}, \text{ iso});$ öliges Diast.: 7.37 min

Mit 62.5 g (0.40 mol) (+)-Menthol erhielt man 71.1 g (60%) *ent-***38** als weißen Festkörper vom Schmp. 108 °C (Aceton). $[\alpha]^{20}{}_{D} = +202.4$ (c = 1.85, Aceton).

M 10 (E)-N,N-Diisopropylcarbamidsäure-2-butenylester (39),

wurde nach Lit. 34) hergestellt.

M 11 4-Chlorbutansäurechlorid,

wurde nach Lit.¹⁴⁷⁾ in 91% Ausbeute hergestellt. Sdp.: 58-59 °C/12 Torr (Lit.¹⁴⁷ 70-71 °C/15 Torr, 89%)

M 12 (RS₅,1S) p-Toluolsulfinsäure-(1-methylbenzyl)amid (335a)

wurde gemäß der in Lit.¹⁴⁸⁾ angegeben allg. Arbeitsvorschrift zur Synthese von Sulfinsäureamiden in 81% Ausbeute synthetisiert. Die spektroskopischen Daten stimmen mit denen in Lit.⁶⁹⁾ angegebenen überein.

N Synthese der Sulfone 45 und 46, sowie des 3-Phenylsulfenylalkenylcarbamats 51

N 1 (E)-N,N-Diisopropylcarbamidsäure-[1-(methansulfonyl)-2-butenyl]ester (45)

Zu einer auf -78 °C gekühlten Lsg. von 0.80 g (4.0 mmol) Crotylcarbamat 39 und 0.51 g (4.4 mmol) TMEDA in 15 mL Ether tropfte man 2.5 mL (4.4 mmol) einer 1.77 M Lsg. von *n*-BuLi in Hexan, rührte 1 h nach und injizierte dann 0.83 g (8.8 mmol) Dimethyldisulfid in einer Portion. Nach 45 min entfernte man das Kühlbad, rührte weitere 2 h nach und goß dann die Reaktionsmischung auf 20 mL Wasser und 10 mL Ether. Nach dreimaliger Extraktion der wäßrigen Phase mit jeweils 20 mL Ether trocknete man die vereinigten Extrakte über Magnesiumsulfat, zog das Solvens i. Vak. ab und löste den erhaltenen öligen Rückstand in 20 mL Dichlormethan. Diese Lösung tropfte man bei 0-5 °C zu 3.3 g (16.0 mmol) 85proz. *m*-Chlorperbenzoesäure in 30 mL Chloroform, rührte 2 h bei 0 °C nach, zerstörte dann überschüssige Persäure durch Zugabe von 0.5 g (8.1 mmol) Dimethylsulfid und verteilte zwischen 50 mL 10% Natriumhydrogencarbonatlsg. und 20 mL Chloroform. Man wusch die organische Phase zweimal mit jeweils 20 mL 10proz. Natriumhydrogencarbonatlsg., trocknete über Magnesiumsulfat und chromatographierte an 100 g Kieselgel (erst E/P = 1:5, dann E/P = 1:1). Man erhielt 0.82 g (74%) **45** als farbloses Öl.

45 4 2 5 SO_2CH_3 0 10 8 7 10 8 7 10 8

 $R_F = 0.21$ (E/P = 1:1) ; 0.56 (EE/P = 2:1) ; $R_t = 5.6$ min (200 °C, iso). IR (Film): 1700 (C=0), 1320, 1140 cm⁻¹ (O=S=O). 300-MHz-¹H-NMR (CDCl₃) : δ = 1.26 (br., 8-H₆), 1.29 (br., 10-H₆), 1.85 (ddd, 4-H₃), 2.84 (s, 5-H₃), 3.93 (br., 7-H), 4.02 (br., 9-H), 5.69 (ddq, 2-H), 6.15 (ddq, 1-H), 6.16 (dqd, 3-H).

 $J_{1,2} = 7.1$ Hz, $J_{1,3} = 1.1$ Hz, $J_{1,4} = 0.9$ Hz, $J_{2,3} = 15.6$ Hz, $J_{2,4} = 1.7$ Hz, $J_{3,4} = 6.7$ Hz, $J_{9,10} = J_{7,8} = 7$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 18.27 (C-4), 20.42 (C-8), 21.49 (C-10), 37.70 (C-5), 46.31 (C-7), 47.28 (C-9), 86.58 (C-1), 118.61 (C-3), 137.24 (C-2), 152.42 (C-6).

C₁₂H₂₃NO₄S (277.39)

Ber. C 51.96 H 8.36 Gef. C 51.65 H 8.36

N 2 Allgemeine Arbeitsvorschrift zur Darstellung der *N*,*N*-Diisopropylcarbamidsäure-[1-(*p*-toluolsulfonyl)-2-alkenyl]ester

Variante A

Zu 1.0 Äquiv. des betreffenden 2-Alkenylcarbamates und 1.1 Äquiv. TMEDA in *n*-Hexan (2 mL/mmol) tropfte man bei -78 °C 1.1 Äquiv. einer ca. 1.6 M Lsg. von *n*-BuLi in *n*-Hexan, rührte 1 h nach und injizierte dann 0.55 Äquiv. *p*-Toluolsulfonsäurefluorid **48**, gelöst in *n*-Hexan (1 mL/mmol). Nach einstdg. Rühren bei -78 °C entfernte man das Kühlbad und goß den Kolbeninhalt auf eine Mischung aus Eis, 2 N Salzsäure und Ether (jeweils 10 mL/mmol). Die wäßrige Phase wurde zweimal mit Ether (10 mL/mmol) extrahiert, die vereinigten organischen Phasen wusch man mit 10proz. Natriumhydrogencarbonatlsg. (5 mL/mmol), trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und reinigte das Rohprodukt durch Säulenchromatographie an Kieselgel (20 g/mmol, E/P).

Variante B

Die Lithiierung erfolgte analog zu Variante A, man verwandte jedoch nur 0.50 Äquiv. **48**. Nach 1 h Nachrühren wurden bei -78 °C 0.55 Äquiv. *n*-BuLi zur Reaktionsmischung gegeben, 1 h gerührt und 0.25 Äquiv. **48** hinzugefügt. Nach einer weiteren Stunde metallierte man erneut mit 0.26 Äquiv. *n*-BuLi, rührte 1 h nach und injizierte 0.13 Äquiv. des Fluorids **48.** Nach einer Reaktionsdauer von 1-2 h arbeitete man wie in Variante A beschrieben auf.

N 2.1 (E)-N,N-Diisopropylcarbamidsäure-[1-(p-toluolsulfonyl)-2-butenyl]ester (46)

Mit 1.0 g (5.0 mmol) **39** erhielt man nach **Variante A** 0.57 g (64% bezogen auf **48**) **46**; 10.0 g (50.0 mmol) **39** ergaben nach **Variante B** 12.3 g (70% bezogen auf **48**) **46**.

 $R_F = 0.39$ (E/P = 1:1), weißer Festkörper, Schmp. 71 °C (Hexan).

IR (Film) : 1710 (C=O), 1335, 1155 cm⁻¹ (O=S=O).

300-MHz-¹H-NMR (CDCl₃) : $\delta = 0.8 - 1.3$ (m, br., 12-H₆ und 14-H₆), 1.75 (ddd, 4-H₃), 2.36 (s, 9-H₃), 3.55 (br., 11-H), 3.90 (br., 13-H), 5.600 (ddq, 2-H), 5.992 (dqd, 3-H), 6.15 (ddq, 1-H), 7.24 (m, 7-H₂), 7.71 (wie dt, 6-H₂).

 $J_{1,2} = 7.4$ Hz, $J_{1,3} = 1.1$ Hz, $J_{1,4} = 0.8$ Hz, $J_{2,3} = 15.4$ Hz, $J_{2,4} = 1.7$ Hz, $J_{3,4} = 6.6$ Hz, $J_{11,12} = J_{13,14} = 7$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 18.18 (C-4), 20.26 (C-12), 20.95 (C-14), 21.54 (C-9), 46.39 (C-11 und C-13), 86.97 (C-1), 119.25 (C-3), 129.39 (C-6), 129.59 (C-7), 133.51 (C-5), 136.69 (C-2), 144.92 (C-8), 151.40 (C-10).

C₁₈H₂₇NO₄S (353.50)

Ber. C 61.16 H 7.70 Gef. C 61.21 H 7.70

N 3 (Z)-N,N-Diisopropylcarbamidsäure-[3-(phenylsulfenyl)-1-butenyl]ester (51)

Zu einer auf -78 °C gekühlten Lösung von 1.00 g (5.0 mmol) Carbamat **39** und 0.64 g (5.5 mmol) TMEDA in 10 mL Ether tropfte man 3.1 mL (5.5 mmol) einer 1.76 M Lsg. von *n*-BuLi in Hexan. Nach 1 h wurde die Lsg. durch einen Polyethylenschlauch in eine ebenfalls auf -78 °C gekühlte Lösung von 1.45 g (5.5 mmol) des Thiosulfonsäureesters **50** in 10 mL THF gepumpt. Man rührte zunächst 45 min bei dieser Temp., dann 2 h bei Raumtemp. und goß dann auf eine Mischung aus 20 mL Ether und 20 mL Wasser. Nachdem man die wäßrige Phase mit Kochsalz gesättigt hatte, extrahierte man zweimal mit jeweils 20 mL Ether, trocknete über Magnesiumsulfat, zog das Lösungsmittel i. Vak. ab und erhielt nach Chromatographie an 100 g Kieselgel (E/P = 1:4) 0.83 g (54%) **51** als farbloses, zersetzliches Öl.

 $R_F = 0.55 (E/P = 1:1)$

300-MHz-¹H-NMR (CDCl₃) : δ = 1.20, 1.22 (je d, 7-H₆), 1.38 (d, 9-H₆), 1.42 (d, 4-H₃), 3.78 (br., 6-H), 4.00 (br., 8-H), 4.26 (dqd, 3-H), 4.74 (dd, 2-H), 6.99 (dd, 1-H), 7.2-7.35 (m, 11-H₃), 7.4-7.48 (m, 10-H₂).

 $J_{1,2} = 6.4$ Hz, $J_{1,3} = 0.9$ Hz, $J_{2,3} = 10.1$ Hz, $J_{3,4} = 6.9$ Hz, $J_{6,7} = 6.8$ Hz, $J_{8,9} = 6.9$ Hz.

Sulfone 45 und 46

O Umsetzungen der Sulfone 45 und 46 mit Carbonylelektrophilen

O 1 Umsetzung von 45 mit 2,2-Dimethylpropanal: (2*E*,1*R*^{*}*S*^{*},2'*R*^{*}*S*^{*})-*N*,*N*-Diisopropylcarbamidsäure-[1-(2-hydroxy-3,3-dimethylbutylsulfonyl)-2-butenyl]ester (56A/B)

277 mg (1.0 mmol) **45**, 128 mg (1.1 mmol) TMEDA und 95 mg (1.1 mmol) 2,2-Dimethylpropanal in 5 mL Ether wurden bei -78 °C mit 1.0 mL (1.1 mmol) einer 1.1 M Lsg. von LDA in THF versetzt. Man rührte 1 h bei dieser Temp. nach, injizierte bei -78 °C 0.50 g 50% Essigsäure, entfernte das Kühlbad, verteilte zwischen 10 mL Ether und 10 mL ges. Natriumhydrogencarbonatlsg., extrahierte die wäßrige Phase zweimal mit je 10 mL Ether, trocknete über Magnesiumsulfat und zog das Solvens i. Vak. ab. Nach Chromatographie an 36 g Kieselgel (E/P = 1:1) erhielt man 193 mg (53%) **56AB** als 1:1 Diastereomerengemisch (kapillargaschromatographisch bestimmt). Nach erneuter Chromatographie an 70 g Kieselgel (E/P = 1:1) und zweimaliger Kristallisation (E/P) isolierte man 22 mg des polareren Diastereomeren **56B** in 91% Reinheit (¹H-NMR-spektroskopisch bestimmt) als weißen Festkörper vom Schmp. 111 °C (E/P).

 $R_F = 0.45$ und 0.49 (EE/P = 1:2), $R_t = 17.1$ min und 18.05 min (190 °C, iso).

 $R_F = 0.45$: IR (Film) : 3470 (OH), 1690 (C=0), 1315, 1135 cm⁻¹ (O=S=O).

300-MHz-¹H-NMR (CDCl₃) : $\delta = 0.91$ (s, 8-H₉), 1.25 (br., 11-H₆ und 13-H₆), 1.85 (ddd, 4-H₃), 3.078, 3.093 (AB von ABX, 5-H und 5-H'), 3.34 (d, O*H*), 3.89 (X von ABX, ddd, H-6), 3.97 (qq, 10-H und 12-H), 5.689 (ddq, 2-H), 6.17 (dqd, 3-H), 6.29 (ddq, 1-H).

 $J_{1,2} = 7.4 \text{ Hz}, J_{1,3} = 1.0 \text{ Hz}, J_{1,4} = 0.7 \text{ Hz}, J_{2,3} = 15.4 \text{ Hz}, J_{2,4} = 1.7 \text{ Hz}, J_{3,4} = 6.6 \text{Hz}, J_{AB} = 14.6 \text{ Hz}, J = 5.6 \text{Hz}, J_{BX} = 6.7 \text{ Hz}, J_{6,0H} = 5.7 \text{Hz}, J_{10,11} = J_{12,13} = 6.5 \text{ Hz}.$

C17H39NO5S (363.52)

Ber. C 56.18 H 9.15 Gef. C 56.41 H 9.32

O 2 Umsetzungen des Sulfons 46

O 2.1 Allg. Arbeitsvorschrift zur Synthese der Enone 66

1.0 Äquiv. des Sulfons **46** in THF (2 mL/mmol) wurden bei -78 °C mit 1.1 Äquiv. *n*-BuLi (ca. 1.6 M Lsg. in *n*-Hexan) 30 min lang metalliert. Anschließend injizierte man 1.1 Äquiv. TIPT gelöst in *n*-Hexan (0.5 mL/mmol), rührte erneut 30 min nach und setzte dann 1.1 Äquiv. der Carbonylverbindung hinzu. Nach 4 h brach man die Reaktion durch Injektion von 2 N Salzsäure (0.5 mL/mmol) ab, entfernte das Kühlbad und goß auf eine Mischung aus Eis, 2 N Salzsäure und Ether (jeweils 10 mL/mmol). Die wäßrige Phase wurde noch zweimal mit Ether (je 10 mL/mmol) extrahiert, die vereinigten organischen Phasen mit ges. Natriumhydrogencarbonatlsg. (10 mL/mrnol) entsäuert, über Magnesiumsulfat getrocknet und i. Vak. vom Solvens befreit. Die Reinigung des Rohproduktes erfolgte säulenchromatographisch an Kieselgel (20 g/mmol, E/P = 1:8 bis 1:3).

-160-

O 2.1.1 (4*E*)-2-(*N*,*N*-Diisopropylcarbamoyloxy)-2-methyl-4-hexen-3-on (61)

Abweichend von der allg. Arbeitsvorschrift wurden aus 300 mg (0.85 mmol) **46** nach Metallierung mit 1.0 mL (0.94 mmol) einer 0.94 M Lsg. von LDA in THF und 74 mg (1.3 mmol) Aceton ohne Zusatz von TIPT neben 96 mg (44%) Ausgangsmaterial 97 mg (45%) **61** als farbloses Öl isoliert.

 $R_F = 0.54$ (E/P = 1:1); $R_t = 2.7$ min (210 °C, iso).

IR (Film) : 1690 (C=0), 1630 cm⁻¹ (C=C).

300-MHz⁻¹H-NMR (CDCl₃) : δ = 1.0 - 1.3 (br., 9-H₆ und 11-H₆), 1.49 (s, 1-H₃ und 6-H₃), 1.87 (dd, 6-H₃), 3.71 (br., 8-H), 4.12 (br., 10-H), 6.37 (dq, 4-H), 7.01 (dq, 5-H).

 $J_{1,2} = 6.9$ Hz, $J_{1,3} = 1.7$ Hz, $J_{2,3} = 15.3$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 18.21 (C-6), 20.44 (C-9), 21.66 (C-11), 23.81 (C-1 und C-6), 45.26 (C-8), 46.57 (C-10), 82.17 (C-2), 124.75 (C-4), 142.19 (C-5), 154.10 (C-7), 196.76 (C-3).

C14H25NO3(255.36)

Ber. C 65.85 H 9.87 Gef. C 65.73 H 9.84

O 2.1.2 (2E,5RS)-5-(N,N-Diisopropylcarbamoyloxy)-6-methyl-2-hepten-4-on (59)

Mit 353 mg (1.0 mmol) **46** und 79 mg (1.1 mmol) 2-Methylpropanal erhielt man 148 mg (55%) **59** als farbloses Öl.

IR (Film) : 1690 (C=0), 1635 cm⁻¹ (C=C).

300-MHz-¹H-NMR (CDCl₃) : δ = 0.96 (d, 7-H₃), 1.05 (d, 8-H₃), 1.1 - 1.4 (br., 11-H₁₂), 1.90 (dd, 1-H₃), 2.21 (qqd, 6-H), 3.82 (br., 10-H), 4.06 (br., 12-H), 4.99 (d, 5-H), 6.27 (dq, 3-H), 6.99 (dq, 2-H).

 $J_{1,2} = 6.9$ Hz, $J_{1,3} = 1.7$ Hz, $J_{2,3} = 15.5$ Hz, $J_{6,7} = J_{6,8} = 6.9$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 17.36 (C-7), 18.21 (C-1), 19.37 (C-8), 20 (br., C-11), 29.71 (C-6), 45 (br., C-10 und C-12), 81.91 (C-5), 127.71 (C-3), 143.06 (C-2), 154.86 (C-9), 196.39 (C-4).

C₁₅H₂₇NO₃ (269.39)

Ber. C 66.88 H 10.10 Gef. C 66.83 H 10.13

O 2.1.3 (2E,5R,6S)-6-(*tert*-Butyldimethylsilyoxy)-5-(N,N-diisopropylcarbamoyloxy)-2hepten-4-on (63)

Mit 353 mg (1.0 mmol) **46** und 207 mg (1.1 mmol) (*S*)-**9** erhielt man 220 mg (57%) **63** (*ds* \geq 99%, kapillargaschromatographisch und ¹H-NMR-spektroskopisch bestimmt) als farbloses Öl.

-163-

Sulfone 45 und 46

Ber. C 62.30 H 10.19

Gef. C 62.45 H 10.18

-162-

Mit *rac*-**9** erhielt man 205 mg (53%) *rac*-**63** ($ds \ge 99\%$, kapillargaschromatographisch und ¹H-NMR-spektroskopisch bestimmt) als farbloses Öl.

 $R_F = 0.58 (E/P = 1:1)$; $R_t = 12.7 min (100-200 °C, 10 °C/min)$

 $[\alpha]_{D}^{20} = +60.4 (c = 1.96, CHCl_3).$

IR (Film) : 1700 (NC=O), 1690 (C=O), 1630 cm⁻¹ (C=C).

300-MHz⁻¹H-NMR (CDCl₃) : δ = -0.09 (s, 8-H₃), -0.05 (s, 9-H₃), 0.84 (s, 10-H₉), 1.0 - 1.3 (br., 14-H₁₂), 1.22 (d, 7-H₃), 1.87 (dd, 1-H₃), 3.84 (br., 13-H), 4.01 (br., 15-H), 4.15 (qd, 6-H), 5.49 (d, 5-H), 6.31 (dq, 3-H), 6.94 (dq, 2-H).

 $J_{1,2} = 6.9$ Hz, $J_{1,3} = 1.7$ Hz, $J_{2,3} = 15.6$ Hz, $J_{5,6} = 5.5$ Hz, $J_{6,7} = 6.2$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = -5.01 (C-8), -4.51 (C-9), 17.91 (C-1), 18.35 (C-11), 20.36 (C-7), 21 (br., C-14), 25.69 (C-10), 46 (br., C-13 und C-15), 68.81 (C-6), 81.18 (C-5), 129.34 (C-3), 142.10 (C-2), 154.66 (C-12), 196.56 (C-4).

MS (CI, Isobutan) : $m/e = 386 (93.8\%, [M+1]^+)$.

O 2.1.4 (2*E*,5*R*,6*S*)-6-Benzyloxy-5-(*N*,*N*-diisopropylcarbamoyloxy)-2-hepten-4-on (64)³¹⁾

Abweichend von der allgemeinen Arbeitsvorschrift wurden mit 353 mg (1.0 mmol) **46** und 180 mg (1.1 mmol) (*S*)-**62** in Gegenwart von 616 mg (2.2 mmol) TIPT 206 mg (57%) **64** (*ds* \geq 99%, kapillargaschromatographisch und ¹H-NMR-spektroskopisch bestimmt) als farbloses Öl erhalten.

 $[\alpha]_{D}^{20} = +19.2 (c = 1.1, CH_2Cl_2).$

C₂₀H₃₉NO₄Si (385.64)

IR (Film): 1705 (C=0), 1690 (NC=O), 1650 cm⁻¹ (C=C).

 $\begin{aligned} & 300\text{-MHz-}^{1}\text{H-NMR} \text{ (CDCl}_{3}\text{): } \delta = 1.20 - 1.35 \text{ (br., } 10\text{-}\text{H}_{12}\text{), } 1.27 \text{ (d}, 7\text{-}\text{H}_{3}\text{), } 1.87 \text{ (d}, 1\text{-}\text{H}_{3}\text{), } 3.8 - \\ & 4.1 \text{ (br., } 9\text{-}\text{H}_{2}\text{), } 3.93 \text{ (dq, } 6\text{-}\text{H}\text{), } 4.56 \text{ ("s", } 8\text{-}\text{H}_{2}\text{), } 5.33 \text{ (d}, 5\text{-}\text{H}\text{), } 6.32 \text{ (dd, } 3\text{-}\text{H}\text{), } 6.95 \text{ (dd, } 2\text{-}\text{H}\text{), } 7.3 \\ & - 7.4 \text{ (m, Phenyl-H).} \end{aligned}$

 $J_{1,2} = 7.0$ Hz, $J_{1,3} = 1.6$ Hz, $J_{2,3} = 15.6$ Hz, $J_{5,6} = 4.6$ Hz, $J_{6,7} = 6.4$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 16.20 (C-7), 18.21 (C-1), 21 (br., C-10), 46 (br., C-9),

70.79 (C-8), 74.34 (C-6), 78.61 (C-5), 127.28, 127.44, 128.06, 137.93 (Aryl-C), 127.34 (C-3), 143.42 (C-2), 154.40 (C-11), 195.79 (C-4).

MS (CI, Isobutan): $m/e = 362 (72.8\%, [M+1]^+)$.

C12H31NO4 (361.48)

Ber. C 69.78 H 8.64 Gef. C 69.70 H 8.77

O 3 Allg. Arbeitsvorschrift zur Darstellung der 4-Hydroxy-1-(*p*-toluolsulfonyl)-1-alkenylcarbamate 18

Zu 1.0 Äquiv. des Sulfons **46** in Ether (5 mL/mmol) tropfte man bei -78 °C 1.1 Äquiv. einer ca. 1.6M Lsg. von *n*-BuLi in Hexan, rührte 30 min nach und injizierte 1.1 Äquiv. einer 2.2 molalen Lsg. von ClTiO in Hexan. Anschließend rührte man 30 min bei -22 °C (CCl₄/CO₂ - Bad), kühlte erneut auf -78 °C, fügte den Aldehyd hinzu, entfernte das Kühlbad und rührte 16 h nach. Entsprechend der allg. Arbeitsvorschrift in Abschnitt **O 2.1** arbeitete man salzsauer auf und reinigte die erhaltenen Rohprodukte flüssigkeitschromatographisch (30 g Kieselgel/ mmol, E/P = 1:3 bis E/P = 1:1).

O 3.1 Umsetzung mit 2-Methylpropanal: (1*E*,3*R**,4*S**)-*N*,*N*-Diisopropylcarbamidsäure-[4-hydroxy-3,5-dimethyl-1-(*p*-toluolsulfonyl)-1-hexenyl]ester (68)

Mit 353 mg (1.0 mmol) **46** erhielt man 361 mg (85%) **68** als farblosen Festkörper vom Schmp. 96 °C (E/P).

IR (KBr): 3350, 3450 (OH), 1720 (C=O), 1315, 1150 cm-1 (O=S=O).

300-MHz-¹H-NMR ($C_6D_6/CDCl_3 = 1:2$) : $\delta = 0.72$ (d, 6-H₃), 0.83 (d, 12-H₃), 0.88 (d, 8-H₃), 0.97 (d, 11-H₃), 0.98 (d, 7-H₃), 1.03 (d, 13-H₃), 1.06 (d, 15-H₃), 1.64 (qqd, 5-H), 2.13 ("s", 20-H₃), 2.42 (ddq, 3-H), 3.19 (ddd, 4-H), 3.27 (d, OH), 3.38 (qq, 10-H), 3.94 (qq, 14-H), 6.86 (d, 2-H), 7.06 (wie d, 18-H₂), 7.79 (wie dt, 17-H₂).

 $J_{2,3} = 11.1 \text{ Hz}, J_{3,4} = 8.6 \text{ Hz}, J_{3,8} = 6.7 \text{ Hz}, J_{4,5} = 2.9 \text{ Hz}, J_{5.7} = 6.8 \text{ Hz}, J_{5.6} = 6.7 \text{ Hz}, J_{10,11/12} = J_{13,14/15} = 6.8 \text{ Hz}.$

75-MHz-¹³C-NMR (CDCl₃) : δ = 14.5 (C-8), 16.60 (C-7), 19.80 (C-12), 19.9 (C-11), 20.1 (C-6), 20.9 (C-15), 21 (C-13), 21.53 (C-20), 30.1 (C-5), 35.5 (C-3), 46.8 (C-10), 47.4 (C-14), 79.22 (C-4), 128.9 (C-17), 129.5 (C-18), 134.2 (C-2), 135.0 (C-16), 144.48 (C-19), 144.63 (C-1), 150.4 (C-9).

C₂₂H₃₅NO₅S (425.59)

Ber. C 62.09 H 8.29 Gef. C 62.25 H 8.36

-167-

O 3.2 Umsetzung mit S-9: (1*E*,3*R*,4*R*,5*S*) und (1*E*,3*S*,4*S*,5*S*)-*N*,*N*-Diisopropylcarbamidsäure-[(5-*tert*-butyl-dimethylsilyloxy)-4-hydroxy-3-methyl-1-(*p*-toluolsulfonyl)-1-hexenyl]ester (69 und 70)

Mit 353 mg (1.0 mmol) **46** und 207 mg (1.1 mmol) *S*-**9** erhielt man 127 mg (36%) Ausgangsmaterial im Gemisch mit 144 mg (27%, ¹H-NMR-spektroskopisch bestimmt) des unpolareren Diastereomeren **70** und 176 mg (32%) des polareren Diastereomeren **69** als farblose Öle (Gesamtausbeute 320 mg, 59%).

70:

 $R_F = 0.40 (E/P = 1:1)$

 $[\alpha]^{20}_{D} = +20.1$ (korrigiert, c = 0.61, CH₃OH)

IR (Film) : 3500 (OH), 1730 cm-¹ (C=O).

300-MHz-¹H-NMR (CDCl₃) : $\delta = 0.09$ (s, 7-H₆), 0.89 (s, 8-H₉), 1.0 - 1.3 (m, 14-H₁₂, 6-H₃ und 10-H₃), 2.42 (s, 22-H₃), 2.55 (ddq, 3-H), 3.00 (OH), 3.25 (br., 4-H), 3.66 (qq, 12-H), 3.74 (dq, 5-H), 4.00 (qq, 13-H), 6.85 (d, 2-H), 7.31 (m, 20-H₂), 7.77 (wie dt, 19-H₂).

 $J_{2,3} = 10.8 \text{ Hz}, J_{3,4} = 6.6 \text{ Hz}, J_{3,10} = 6.8 \text{ Hz}, J_{4,5} = 5.0 \text{ Hz}, J_{5,6} = 6.2 \text{ Hz}, J_{12,14} = J_{13,15} = 6.9 \text{ Hz}.$

C₂₇H₄₇NO₆SSi (541.82)

69:

 $R_F = 0.33 (E/P = 1:1)$

 $[\alpha]_{D}^{20} = -10.5 \text{ (c} = 0.58, \text{CH}_{3}\text{OH}).$

IR (Film) : 3500 (OH), 1730 cm⁻¹ (C=O).

 $\begin{aligned} & 300\text{-}MHz^{-1}H\text{-}NMR \ (CDCl_3): \delta = 0.06 \ (s, 7\text{-}H_6), \ 0.89 \ (s, 8\text{-}H_9), \ 1.024 \ (d, 16\text{-}H_3), \ 1.108 \ (d, 6\text{-}H_3), \\ & 1.090 \ (d, 14\text{-}H_3), \ 1.103 \ (d, 10\text{-}H_3), \ 1.168 \ (d, 15\text{-}H_3), \ 1.207 \ (d, 17\text{-}H_3), \ 2.39 \ (s, 22\text{-}H_3), \ 2.42 \ (ddq, 3\text{-}H), \\ & 3\text{-}H), \ 3.124 \ (d, OH), \ 3.401 \ (ddd, 4\text{-}H), \ 3.63 \ (qq, 12\text{-}11), \ 3.770 \ (dq, 5\text{-}H), \ 4.014 \ (qq, 13\text{-}11), \ 6.821 \ (d, 2\text{-}H), \ 7.276 \ (m, 20\text{-}H_2), \ 7.771 \ (wie \ dt, 19\text{-}H_2). \end{aligned}$

 $J_{2,3} = 10.5$ Hz, $J_{3,4} = 7.8$ Hz, $J_{3,10} = 6.9$ Hz, $J_{4,5} = 4.1$ Hz, $J_{4,OH} = 5.9$ Hz, $J_{5,6} = 6.4$ Hz, $J_{12,16/17} = 6.8$ Hz, $J_{13,14/15} = 6.9$ Hz.

75-MHz-¹³C-NMR (CDCl₃): δ = -4.85, -4.54 (C-7), 16.56 (C-10), 17.60 (C-6), 17.90 (C-9), 19.75 (C-16), 19.88 (C-17), 20.84 (C-14), 20.91 (C-15), 21.40 (C-22), 25.73 (C-8), 34.81 (C-3), 46.63 (C-12), 47.14 (C-13), 70.66 (C-5), 78.42 (C-4), 128.64 (C-19), 129.19 (C-20), 133.30 (C-2), 135.29 (C-18), 144.31 (C-1 und C-21), 150.22 (C-11).

C27H47NO6SSi (541.82)

Ber. C 59.85 H 8.74 Gef. C 59.95 H 8.91

O 3.3 Umsetzung mit *S*- und *rac-62*: (1*E*,3*R*,4*R*,5*S*) und (1*E*,3*S*,4*S*,5*S*)-*N*,*N*-Diisopropylcarbamidsäure-[5-benzyloxy-4-hydroxy-3-methyl-1-(*p*-toluolsulfonyl)-1-hexenyl]ester (71 und 72)

Mit 353 mg (l.0 mmol) 46 und 181 mg (l.1 mmol) S-62 erhielt man 169 mg (33%) des unpolaren (72) und 165 mg (32%) des polaren Diastereomeren (71) als farblose Öle;

-166-

-169-

Sulfone 45 und 46

Ber. C 64.96 H 7.59

Gef. C 64.99 H 7.45

-168-

Gesamtausbeute 335 mg (65%).

Mit *rac*-**62** erhielt man 119 mg (23%) des unpolaren **72** und 261 mg (51%) des polaren Diastereomeren **71** (Gesamtausbeute 380 mg, 74%).

72:

 $R_F = 0.25 (E/P = 1:1)$

 $[\alpha]^{20}_{D} = +14.7 (c = 4.59, CH_3OH)$

IR (Film): 3450 (OH), 1720 cm⁻¹ (C=O).

 $\begin{aligned} & 300\text{-MHz}\text{-}^{1}\text{H-NMR} (\text{CDCl}_{3}): \delta = 1.008 \text{ (d}, 13\text{-}\text{H}_{3}), 1.043 \text{ (d}, 8\text{-}\text{H}_{3}), 1.047 \text{ (d}, 15\text{-}\text{H}_{3}), 1.182 \text{ (d}, 6\text{-}\text{H}_{3}), 1.184 \text{ (d}, 11\text{-}\text{H}_{3}), 1.201 \text{ (d}, 12\text{-}\text{H}_{3}), 2.393 ("s", 20\text{-}\text{H}_{3}), 2.623 \text{ (ddq}, 3\text{-}\text{H}), 3.25 \text{ (br., OH)}, \\ & 3.338 \text{ (dd, 4-H)}, 3.469 \text{ (qd, 5-H)}, 3.614 \text{ (qq, 14-H)}, 3.994 \text{ (qq, 10-H)}, 4.381, 4.604 \text{ (AB, 7-H}_{2}), \\ & 6,864 \text{ (d}, 2\text{-}\text{H}), 7.2 \text{-}7.4 \text{ (m, Aryl-H)}, 7.75 \text{ (wie dt, 17-H}_{2}). \end{aligned}$

 $J_{2,3} = 11.0$ Hz, $J_{3,4} = 5.9$ Hz, $J_{3,8} = 6.9$ Hz, $J_{4,5} = 5.1$ Hz, $J_{5,6} = 6.2$ Hz, $J_{AB} = 11.8$ Hz, $J_{10,11/12} = J_{14,13/15} = 6.9$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 15.35 (C-8), 16.52 (C-6), 19,86 (C-11 und C-12), 20.96 (C-13), 21.05 (C-15), 21.50 (C-20), 33.84 (C-3), 46.75 (C-10), 47.15 (C-14), 70.64 (C-7), 75.32 (C-4), 77.76 (C-5), 127.48, 127.63, 128.22, 138.38 (Phenyl-C), 128.73 (C-17), 129.42 (C-18), 132.71 (C-2), 135.34 (C-16), 144.51 (C-19), 144.78 (C-1), 150.02 (C-9).

IR (Film) : 3500 (OH), 1725 cm⁻¹ (C=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.009 (d, 13-H₃), 1.071 (d, 15-H₃), 1.074 (d, 8-H₃), 1.132 (d, 11-H₃), 1.145 (d, 6-H₃), 1.180 (d, 12-H₃), 2.393 ("s", 20-H₃), 2.515 (ddq, 3-H), 3.18 (br., O*H*), 3.497 (qd, 5-H), 3.591 (qq, 14-H), 3.624 (dd, 4-H), 4.000 (qq, 10-H), 4.478, 4.580 (AB, 7-H₂), 6.832 (d, 2-H), 7.2 -7.4 (m, Aryl-H), 7.75 (wie dt, 17-H₂).

 $J_{2,3} = 10.6$ Hz, $J_{3,4} = 7.3$ Hz, $J_{3,8} = 6.8$ Hz, $J_{4,5} = 4.1$ Hz, $J_{5,6} = 6.2$ Hz, $J_{AB} = 11.9$ Hz, $J_{10,11/12} = J_{14,13/15} = 6.9$ Hz.

75-MHz⁻¹³C-NMR (CDCl₃) : δ = 14.08 (C-8), 16.39 (C-6), 19.80 (C-11), 19.90 (C-12), 20.82 (C-13), 20.92 (C-15), 21.46 (C-20), 34.71 (C-3), 46.63 (C-10), 47.24 (C-14), 70.48 (C-7), 76.37 (C-4), 76.44 (C-5), 128.72 (C-17), 129.37 (C-18), 127.40, 128.14, 138.45 (Phenyl-C), 132.95 (C-2), 135.23 (C-16), 144.65 (C-1), 144.47 (C-19), 150.26 (C-9).

C₂₈H₃₉NO₆S (517.69)

Ber. C 64.96 H 7.59 Gef. C 64.91 H 7.55

O 4 "Eintopfvariante" zur Synthese von 68: (1*E*,3*R*^{*},4*S*^{*})-*N*,*N*-Diisopropylcarbamidsäure-[4-hydroxy-3,5-dimethyl-1-(*p*-toluolsulfonyl)-1-hexenyl]ester (68)

Zu einer auf -78 °C gekühlten Lösung von 1.99 g (10.0 mmol) Carbamat 39 und 1.22 g

der allg. Arbeitsvorschrift (O 3) auf und isolierte neben 1.12 g eines 91:9 - Gemischs (kapillargaschromatographisch bestimmt) aus dem Carbamat **39** und dem Fluorid **48**, 0.78 g (40%) des Sulfons 46 und 1.35 g (58%) 68. Die physikalischen Daten stimmen mit denen in den Abschnitten N 2.1 und O 3.1 angegebenen überein.

O 5 Synthese der 4-0-geschützten 4-Hydroxy-1-(p-toluolsulfonyl)-1-alkenylcarbamate

hinzu.

0 5.1 (*IE*,3*R*^{*},4*S**)-*N*,*N*-Diisopropylcarbamidsäure-[3,5-dimethyl-4-trimethylsilyloxy-1-(p-toluolsulfonyl)-1-hexenyl]ester (311)

425 mg (1.0 mmol) 68 und 218 mg (1.5 mmol) Diethylaminotrimethylsilan wurden in 1.0 mL Acetonitril gelöst und 24 h unter Rückfluß erhitzt. Danach entfernte man die flüchtigen Bestandteile i. Vak., chromatographierte an 36 g Kieselgel (E/P = 1:4) und erhielt 444 mg (89%) **311** als farbloses Öl.

 $R_F = 0.55$ (E/P = 1:1); $R_t = 10.7$ min (240 °C, iso).

IR (Film): 1735, 1725 (C=O), 1320, 1155 cm⁻¹ (O=S=O).

300-MHz⁻¹H-NMR (CDCl₃): $\delta = 0.134$ (s, Si(CH₃)₃), 0.795 (d, 6-H₃), 0.828 (d, 7-H₃), 1.039 (d, 9-H₃), 1.047 (d, 11-H₃), 1.094 (d, 13-H₃), 1.190 (d, 14-H₃), 1.204 (d, 16-H₃), 1.615 (dqq, 5-H), 2.396 ("s", 21-H₃), 2.512 (dqd, 3-H), 3.268 (dd, 4-H), 3.649 (qq, 12-H), 3.966 (qq, 15-H), 6.821 (d, 2-H), 7.29 (m, 19-H₂), 7.76 (wie dt, 18-H₂).

 $J_{2,3} = 10.3$ Hz, $J_{3,4} = 3.2$ Hz, $J_{3,9} = 6.9$ Hz, $J_{4,5} = 6.6$ Hz, $J_{5,6} = J_{5,7} = 6.7$ Hz, $J_{12,11/13} = J_{15,14/16} = 6.9$ Hz.

75-MHz-¹³C-NMR (CDCI₃) : $\delta = 0.78$ (Si(*C*H₃)₃), 17.42 (C-9), 18.55 (C-7), 19.30 (C-6), 20.20 (C-11 und C-13), 21.14 (C-14 und C-16), 21.54 (C-21), 32.64 (C-5), 35.28 (C-3), 46.66 (C-12), 47.03 (C-15), 81.32 (C-4), 128.85 (C-18), 129.31 (C-19), 132.92 (C-2), 135.69 (C-17), 144.26 (C-1), 144.32 (C-20), 149.86 (C-10).

C₂₅H₄₃NO₅SSi (497.77)

Ber. C 52.07 H 7.34 Gef. C 51.96 H 7.17

Sulfone 45 und 46

-172-

O 5.2 $(1E,3R^*,4S^*)$ -N,N-Diisopropylcarbamidsäure-[4-(brommethyl-dimethylsilyloxy)-1-(p-toluolsulfonyl)-1-hexenyl]ester (315)

Zu einer auf 0 °C gekühlten Lösung von 425 mg (1.0 mmol) **68** und 146 mg (2.0 mmol) Dimethylethylamin in 2.0 mL Dichlormethan tropfte man 206 mg (1.1 mmol) Brommethylchlordimethylsilan, entfernte dann das Eisbad und rührte 16 h bei Raumtemp. nach. Anschließend verteilte man zwischen 10 mL Ether und 10 mL Wasser, extrahierte die wäßrige Phase noch zweimal mit jeweils 10 mL Ether, trocknete über Magnesiumsulfat und reinigte das Rohprodukt durch Chromatographie an 36g Kieselgel (E/P = 1:4). Man erhielt 408 mg (71%) **315** als farbloses Öl.

 $R_F = 0.51 (E/P = 1:1).$

IR (Film) : 1730 (C=O), 1325, 1160 cm-1 (O=S=O).

300-MHz-¹H-NMR (CDCl₃) : $\delta = 0.302$ (s, 22-H₃), 0.306 (s, 23-H₃), 0.817 (d, 6-H₃), 0.828 (d, 7-H₃), 1.043 (d, 11-H₃), 1.091 (d, 13-H₃), 1.193 (d, 14-H₃), 1.204 (d, 16-H₃), 1.658 (qqd, 5-H), 2.396 ("s", 21-H₃), 2.508 (s, 24-H₂), 2.518 (dqd, 3-H), 3.370 (dd, 4-H), 3.647 (qq, 12-H), 3.962 (qq, 15-H), 6.765 (d, 2-H), 7.3 (m, 19-H₂), 7.78 (wie dt, 18-H₂).

 $J_{2,3} = 10.4$ Hz, $J_{3,4} = 3.7$ Hz, $J_{3,9} = 7.0$ Hz, $J_{4,5} = 6.1$ Hz, $J_{5,6} = J_{5,7} = 6.8$ Hz, $J_{12,11/13} = J_{15,14/16} = 6.7$ Hz.

75-MHz-¹³C-NMR (CDCl₃): δ = -2.22 (C-22 und C-23), 16.82 (C-24), 17.31 (C-9), 18.15

(C-6), 19.37 (C-7), 20.07 (C-11 und C-13), 21.21 (C-14 und C-16), 21.61 (C-21), 32.45 (C-5), 35.33 (C-3), 46.77 (C-12), 47.12 (C-15), 81.94 (C-4), 128.94 (C-18), 129.41 (C-19), 132.43 (C-2), 135.57 (C-17), 144.43 (C-1), 144.76 (C-20), 149.86 (C-10).

C25H42BrNO5SSi (576.67)

Ber. C 52.07 H 7.34 Gef. C 51.96 H 7.17

O 5.3 (1*E*,3*R**,4*S**)-*N*,*N*-Diisopropylcarbamidsäure-[4-(4-chlorbutanoyloxy)-3,5-di methyl-1-(*p*-toluolsulfonyl)-1-hexenyl]ester (300)

Zu 425 mg (1.0 mmol) **68**, 12 mg (0.10 mmol) *N*,*N*-Dimethylaminopyridin (DMAP) und 158 mg (2.0 mmol) Pyridin gelöst in 2.0 mL Dichlormethan tropfte man 176 mg (1.25 mmol) 4-Chlorbutansäurechlorid, rührte 14 h bei Raumtemp. nach und goß dann auf eine Mischung aus Eis, 2 N Salzsäure und Ether (jeweils 10 mL). Man extrahierte zweimal mit jeweils 10 mL Ether, entsäuerte mit ges. Natriumhydrogencarbonatlsg. (10 mL), trocknete über Magnesiumsulfat und entfernte das Solvens i. Vak.. Nach Chromatographie an 36 g Kieselgel (E/P = 1:3) erhielt man 530 mg (100%) **300** als farbloses Öl.

 $R_F = 0.35 (E/P = 1:1)$

IR (Film): 1735 (OC=O), 1725 (NC=O), 1320, 1150 cm⁻¹ (O=S=O).

 $\begin{aligned} & 300\text{-MHz-}^{1}\text{H-NMR} \text{ (CDCl}_3): \delta = 0.831 \text{ (d}, 7\text{-}H_3), 0.851 \text{ (d}, 6\text{-}H_3), 1.035 \text{ (d}, 9\text{-}H_3), 1.060 \text{ (d}, 11\text{-}H_3), 1.112 \text{ (d}, 13\text{-}H_3), 1.205 \text{ (d}, 14\text{-}H_3), 1.216 \text{ (d}, 16\text{-}H_3), 1.829 \text{ (qqd}, 5\text{-}H), 2.09 \text{ (m}, 23\text{-}H_2), 2.411 \text{ ("s", 21-}H_3), 2.478, 2.538 \text{ (AB von "ABX_2", 22\text{-}H_2)}, 2.655 \text{ (ddq, 3-}H), 3.598 \text{ (t}, 24\text{-}H_2), 3.65 \text{ (qq}, 12\text{-}H), 3.96 \text{ (qq}, 15\text{-}H), 4.742 \text{ (dd}, 4\text{-}H), 6.669 \text{ (d}, 2\text{-}H), 7.30 \text{ (m}, 19\text{-}H_2), 7.75 \text{ (wie dt, 18\text{-}H_2)}. \end{aligned}$

 $J_{2,3} = 10.5$ Hz, $J_{3,4} = 5.0$ Hz, $J_{4,5} = 6.9$ Hz, $J_{5,6} = J_{5,7} = 6.9$ Hz, $J_{12,11/13} = J_{15,14/16} = 6.8$ Hz, $J_{AB} = 16.3$ Hz, $J_{AX} = 7.5$ Hz, $J_{BX} = 7.2$ Hz, $J_{23,24} = 6.4$ Hz.

75-MHz-¹³C-NMR (CDCl₃): δ = 15.86 (C-9), 16.83 (C-6), 18.94 (C-7), 19.72 (C-11), 19.97 (C-13), 20.82 (C-14 und C-16), 21.27 (C-21), 27.44 (C-23), 29.59 (C-5), 30.92 (C-22), 33.61 (C-3), 43.75 (C-24), 46.50 (C-12), 46.87 (C-15), 79.78 (C-4), 128.57 (C-18), 129.19 (C-19), 130.64 (C-2), 135.09 (C-17), 144.34 (C-20), 144.55 (C-1), 149.27 (C-10), 171.80 (C-8).

MS (CI, Isobutan) : $m/e = 530 (20.7\%, [M+1]^+, 128 (100\%, C_7H_{14}NO)).$

C26H40ClNO6S (530.12)

Ber. C 58.91 H 7.61 Gef. C 59.04 H 7.73

O 5.4 (1*E*,3*R*^{*},4*S*^{*})-*N*,*N*-Diisopropylcarbamidsäure-[3,5-dimethyl-4-(3-oxobutanoyloxy)-1-(*p*-toluolsulfonyl)-1-hexenyl]ester (308)

850 mg (2.0 mmol) **68** wurden mit 2 mg (20 μ mol) DMAP in 5 mL Dichlormethan bei -15 °C vorgelegt und tropfenweise mit 201 mg (2.4 mmol) Diketen versetzt. Anschließend entfernte man das Kühlbad, rührte 18 h bei Raumtemp. nach, zog das Solvens i. Vak. ab und isolierte 1.02 g (100%) **308** als weißen Festkörper, der laut kapillargaschromatographischer Analyse zu über 95% einheitlich war. Zur Analyse wurde aus Ethanol umkristallisiert.

 $R_F = 0.21$ (E/P = 1:1); weißer Festkörper Schmp. 110 °C (EtOH).

IR (KBr): 1740 (C₂₃=O), 1728 (C₁₀=O), 1320, 1160 cm⁻¹ (O=S=O).

300-MHz-¹H-NMR (CDCl₃): $\delta = 0.850$ (d, 6-H₃), 0.873 (d, 7-H₃), 1.056 (d, 11-H₃), 1.067 (d, 9-H₃), 1.108 (d, 13-H₃), 1.202 (d, 14-H₃), 1.207 (d, 16-H₃), 1.838 (dqq, 5-H), 2.300 (s, 24-H₃), 2.413 ("s", 21-H₃), 2.677 (dqd, 3-H), 3.492 ("s", 22-H₂), 3.655 (qq, 12-H), 3.975 (qq, 15-H), 4.764 (dd, 4-H), 6.665 (d, 2-H), 7.31 (m, 19-H₂), 7.78 (wie dt, 18-H₂).

 $J_{2,3} = 10.5$ Hz, $J_{3,4} = 4.8$ Hz, $J_{3,9} = 6.9$ Hz, $J_{4,5} = 7.1$ Hz, $J_{5,6} = J_{5,7} = 6.9$ Hz, $J_{12,11/13} = J_{15,14/16} = 6.9$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 16.25 (C-9), 17.33 (C-6), 19.16 (C-7), 20.02 (C-11 und C-13), 21.14 (C-14 und C-16), 21.58 (C-21), 30.06 (C-5), 30.30 (C-24), 33.84 (C-3), 46.79 (C-12), 47.17 (C-15), 49.79 (C-22), 81.31 (C-4), 128.91 (C-18), 129.49 (C-19), 130.77 (C-2), 135.29 (C-17), 144.66 (C-20), 145.90 (C-1), 149.54 (C-10), 166.84 (C-8), 200.27 (C-23).

MS (CI, Isobutan) : m/e = 510 (26.8%, [M+1]⁺), 426 (100%, M⁺-C₄H₃O₂), 128 (58.6%, C₇H₁₄NO).

C26H39NO7S (509.66)

Ber. C 61.27 H 7.71 Gef. C 61.09 H 7.84

-177-

O 5.5 (1*E*,3*R*,4*R*,5*S*)-*N*,*N*-Diisopropylcarbamidsäure-[4-acetoxy-5-benzyloxy-3-methyl-1-(*p*-toluolsulfonyl)-1-hexenyl]ester (288)

1.21 g (2.35 mmol) des polaren Diastereomeren **71** ($R_F = 0.19$, E/P = 1:1) wurde mit 372 mg (4.7 mmol) Pyridin und 28 mg (0.23 mmol) DMAP in 5 mL Dichlormethan bei Raumtemp. tropfenweise mit 300 mg (2.94 mmol) Acetanhydrid versetzt. Man rührte 16 h nach, verteilte zwischen Ether und 2 N Salzsäure (jeweils 10 mL), extrahierte noch zweimal mit jeweils 15 mL Ether, entsäuerte mit 20 mL ges. Natriumhydrogencarbonatlsg., trocknete über Magnesiumsulfat und erhielt nach Säulenchromatographie an 36 g Kieselgel (E/P = 1:3) 1.18 g (90%) **288** als farbloses, zähes Öl.

 $R_F = 0.25 \ (E/P = 1:1)$

 $\left[\alpha\right]_{D}^{20} = +13.2 \ (c = 1.34 \ CH_2Cl_2)$

IR (Film) : 1735 (C₂₁=O), 1725 (C₉=O), 1320, 1150 cm⁻¹ (O=S=O).

300-MHz-¹H-NMR (CDCl₃) : d = 1.016 (d, 8-H₃), 1.060 (d, 10-H₃), 1.117 (d, 12-H₃), 1.121 (d, 6-H₃), 1.181 (d, 13-H₃), 1.198 (d, 15-H₃), 2.00 (s, 22-H₃), 2.405 ("s", 20-H₃), 2.78 (dqd, 3-H), 3.60 (qd, 5-H), 3.68 (qq, 14-H), 3.94 (qq, 14-H), 4.48, 4.69 (AB, 7-H₂), 4.89 (dd, 4-H), 6.68 (d, 2-H), 7.2 - 7.35 (m, Aryl-H), 7.77 (wie dt, 17-H₂).

 $J_{2,3} = 10.7 \text{ Hz}, J_{3,4} = 5.9 \text{ Hz}, J_{3,8} = 6.9 \text{ Hz}, J_{4,5} = 5.5 \text{ Hz}, J_{5,6} = 6.3 \text{ Hz}, J_{AB} = 11.9 \text{ Hz}, J_{11,10/12} = J_{14,13/15} = 6.9 \text{ Hz}.$

75-MHz-¹³C-NMR (CDCl₃): δ = 15.58 (C-8), 15.87 (C-6), 20.02 (C-10 und C-12), 20.71 (C-22), 21.13 (C-13 und C-15), 21.55 C-20), 32.80 (C-3), 46.83 (C-11), 47.06 (C-14), 70.96 (C-7), 73.81 (C-4), 77.82 (C-5), 127.42, 128.19, 129.44, 138.35 (Phenyl-C), 128.83 (C-17), 129.44 (C-18), 130.96 (C-2), 135.49 (C-16), 144.55 (C-19), 145.83 (C-1), 149.69 (C-9), 170.34 (C-21).

MS (CI, Isobutan): $m/e = 560 (10.9\%, [M+1]^+), 128 (100\%, C_7H_{14}NO).$

C₃₀H₄₁NO₇S (559.73)

Ber. C 64.38 H 7.38 Gef. C 64.23 H 7.35

-178-

P Versuche zur Abwandlung der 4-Hydroxy-1-(*p*-toluolsulfonyl)-1-alkenylcarbamate

P 1 Umsetzung von 68 mit Lithiumaluminiumhydrid: (3*R*^{*},4*S*^{*})-3,5-Dimethylhexan-1,4-diol (280)

In eine auf 0 °C gekühlte Suspension von 190 mg (5.0 mmol) Lithiumaluminiumhydrid in 2 mL THF tropfte man unter Argon eine Lsg. von 425 mg (1.0 mmol) **68** in 2 mL THF. Nachdem die zunächst heftige Wasserstoffentwicklung abgeklungen war, entfernte man das Kühlbad und rührte 1 h bei Raumtemp. nach.

Zur Aufarbeitung versetzte man vorsichtig bei 0 °C mit 0.2 mL Wasser, 0.4 mL 10% Natronlauge und 10 mL Ether, erhitzte dann 30 min unter Rückfluß, filtrierte und extrahierte den Rückstand zweimal mit jeweils 10 mL siedendem Ether. Nach dem Trocknen über Magnesiumsulfat und Entfernen des Solvens isolierte man 129 mg (88%) **280** als kapillargaschromatographisch zu 93% einheitliches farbloses Öl. Chromatographische Reinigung an 10 g Kieselgel (EE) lieferte 117 mg (80%) kapillargaschromatographisch einheitliches, hygroskopisches Produkt.

 $R_F = 0.21 (E/P = 1:1)$; $R_t = 4.27 min (100 - 200 °C/Init.Time = 2 min, 5 °C/min)$.

IR (Film) : 3500 cm-1 (OH).

300-MHz-¹H-NMR (CDCl₃): $\delta = 0.905$ (d, 8-H₃), 0.936 (d, 6-H₃ und 7-H₃), 1.59 (m, 3-H), 1.73 (m, 2-H), 1.829 (qqd, 5-H), 3.05 (br., 2 OH), 3.096 (dd, 4-H), 3.614, 3.758 (AB Teil, 1-H₂). $J_{AB} = 10.7$ Hz, $J_{A2} = 6.7$ Hz, $J_{B2} = 4.8$ Hz, $J_{3,8} = 6.9$ Hz, $J_{3,4} = 6.6$ Hz, $J_{4,5} = 5.1$ Hz, $J_{5,6} = J_{5,7} = 6.8$ Hz. 75-MHz-¹³C-NMR (CDCl₃): δ = 16.26 (C-6), 17.22 (C-8), 20.05 (C-7), 30.35 (C-5), 33.84 (C-3), 35.35 (C-2), 60.32 (C-1), 80.78 (C-4).

 $C_8H_{18}O_2(146.23)$

Ber. C 65.71 H 12.41 Gef. C 65.84 H 13.28

P 2 Umsetzung von 68 mit Lithiumaluminiumhydrid : (1*RS*,3*R*^{*},4*S*^{*})-*N*,*N*-Diisopropylcarbamidsäure-[4-hydroxy-3,5-dimethyl-1-(*p*-toluolsulfonyl)hexyl]ester (284A und 284B³²)

29 mg (0.75 mmol) Lithiumaluminiumhydrid wurden in 2 mL THF unter Argon bei 0 °C suspendiert und tropfenweise mit einer Lösung von 425 mg (1.0 mmol) **68** in 1 mL THF versetzt. Nach 15 min entfernte man das Eisbad, rührte zunächst 5 h bei Raumtemp. und dann 30 min unter Rückfluß. Man arbeitete wie unter **P 1** beschrieben auf, chromatographierte an 36 g Kieselgel und erhielt 98 mg eines Gemisches aus dem unpolaren Diastereomeren **284A** und **68** sowie 101 mg (24%) des polaren Isomeren **284B**. Das Kapillargaschromatogramm des Rohproduktes zeigte ein Epimerenverhältnis **284A** : **284B** = 30 : 70 an.

284B:

-179-

-180-

 R_F = 0.18 (E/P = 1:1) ; weißer Festkörper, Schmp. 134 °C (E/P). R_t = 11.2 min.

IR (KBr) : 3545 (OH), 1710 (C=O), 1325, 1305, 1155 cm⁻¹ (O=S-O).

300-MHz-¹H-NMR (CDCl₃): $\delta = 0.891$ (d, 6-H₃), 0.898 (d, 7-H₃), 0.952 (d, 10-H₃), 0.966 (d, 8-H₃), 1.098 (d, 12-H₃), 1.134 (d, 13-H₃), 1.141 (d, 15-H₃), 1.452 (O*H*), 1.70 (dqdd, M von ABMX, 3-H), 1.800 (qqd, 5-H), 2.000, 2.270 (AB von ABMX, 2-H₂), 2.417 ("s", 20-11₃), 3.134 (ddd, 4-H), 3.56 (qq, 11-H), 4.03 (qq, 14-H), 6.000 (dd, X von ABMX, 1-H), 7.32 (m, 18-H₂), 7.79 (wie dt, 17-H₂).

 $J_{AB} = 14.3 \text{ Hz}, J_{AX} = 11.1 \text{Hz}, J_{BX} = 2.4 \text{ Hz}, J_{AM} = 10.4 \text{ Hz}, J_{BM} = 2.8 \text{ Hz}, J_{3,4} = 5.8 \text{ Hz}, J_{3,8} = 6.8 \text{ Hz}, J_{4,5} = 5.9 \text{ Hz}, J_{4,0H} = 5.7 \text{ Hz}, J_{5,6} = 6.7 \text{ Hz}, J_{11,10/12} = J_{14,13/15} = 6.9 \text{ Hz}.$

Die angegeben Parameter stehen im Einklang mit einer Simulation des Signals des 3-H und einem COSY-90 Spektrum (Kapitel **H**, Abb. 9)

75-MHz-¹³C-NMR (CDCl₃): $\delta = 16.44$ (C-8), 16.85 (C-7), 19.63 (C-6), 19.99 (C-10), 20.14 (C-12), 20.88 (C-13), 21.17 (C-15), 21.57 (C-20), 28.29 (C-2), 30.30 (C-5), 31.79 (C-3), 46.11 (C-11), 46.52 (C-14), 80.61 (C-4), 129.49 (C-17 und C-18), 133.72 (C-16), 144.86 (C-19), 151.64 (C-9).

MS (CI, Isobutan) : $m/e = 428 (23.7\%, [M+1]^+)$.

 $C_{22}H_{37}NO_5S$ (427.61)

Ber. C 61.80 H 8.72 Gef. C 61.97 H 8.79

284A:

 $R_F = 0.23 (E/P = 1:1)$ $R_t = 10.76 min (240 °C, iso)$

-181-

P 3 Zur intramolekularen Michael - Addition

P 3.1 Umsetzung von 288 mit LDA

Zu 607 mg (1.1 mmol) **288** in 2 mL THF tropfte man bei -78 °C 1.0 mL (1.2 mmol) einer Lsg. von LDA in THF (frisch bereitet aus 121 mg (1.2 mmol) Diisopropylamin und

0.68 mL (1.2 mmol) *n*-BuLi (1.76 M in Hexan)), rührte 3.5 h bei dieser Temp., brach die Reaktion durch Injektion von 0.3 mL 50proz. Essigsäure ab und verteilte zwischen 10 mL Ether und 10 mL ges. Kochsalzlsg.. Man extrahierte die wäßrige Phase zweimal mit je 10 mL Ether, entsäuerte mit 10 mL ges. Natriumhydrogencarbonatlsg., trocknete über Magnesiumsulfat und entfernte das Solvens i. Vak.. Die säulenchromatographische Reinigung des Rohprodukte (36 g Kieselgel, E/P = 1:1) ergab 394 mg (65%) des Ausgangsmaterials und 35 mg (7%) der desacetylierten Verbindung **71** ($R_F = 0.19$, (E/P = 1:1)).

Mit 390 mg (0.7 mmol) **288** und 0.8 mmol LDA isolierte man nach 1 h Reaktion bei Raumtemp. unter sonst gleichen Bedingungen 174 mg (45%) des Ausgangsmaterials und 188 mg (52%) **71** ($R_F = 0.19$, E/P = 1:1).

P 3.2 Umsetzung von 308 mit Kaliummethanolat/Methanol

In eine auf 0 °C gekühlte Lsg. von 9 mg (0.10 mmol) Kaliummethanolat in 2 mL Methanol injizierte man 509 mg (1.0 mmol) **308** gelöst in 2 mL Methanol und 2 mL THF und erhitzte 30 h unter Rückfluß. Nach wäßriger Aufarbeitung und chromatographischer Reinigung (36 g Kieselgel, E/P = 1:1) erhielt man 398 mg (94%) **68** (vergl. Abschnitt **O 3.1**).

Abwandlung

P 3.3 Umsetzung von 300 mit Kaliumdiisopropylamid (KDA¹¹⁴): (1*E*,3*R**,4*S**)-*N*,*N*-Diisopropylcarbamidsäure-[4-cyclopropancarbonyloxy-3,5-dimethyl-1-(*p*toluolsulfonyl)-1-hexenyl]ester (303)

Zur Bereitung der KDA - Lsg. tropfte man bei -78 °C 0.24 mL (0.43 mmol) einer 1.76 M Lsg. von *n*-BuLi in Hexan zu 48 mg (0.43 mmol) Kalium-*tert*-butylat (KTB) und 43 mg (0.43 mmol) Diisopropylamin gelöst in 2 mL THF. Nach 5 min injizierte man 205 mg (0.39 mmol), **300** in 0.5 mL THF, worauf sich die Reaktionsmischung rotbraun verfärbte. Unter steter Aufteilung rührte man 5 h nach und goß die nunmehr orangefarbene Mischung auf 10 mL 2N Salzsäure und 10 mL Eis, trennte die Phasen, extrahierte zweimal mit jeweils 10 mL Ether, entsäuerte mit 10 mL ges. Natriumhydrogencarbonatlsg., trocknete über Magnesiumsulfat, zog das Solvens i. Vak. ab und isolierte nach Chromatographie an 36 g Kieselgel ((E/P = 1:2) 113 mg (66%) **303** als farbloses Öl.

 $R_F = 0.43 (E/P = 1:1)$

 $\begin{array}{l} 300\text{-}MHz\text{-}^1H\text{-}NMR \ (CDCl_3): \delta = 0.80 \ \text{-}\ 0.92 \ (m,\ 23\text{-}H_4,\ 6\text{-}H_3) \ und\ 7\text{-}H_3),\ 0.93 \ \text{-}\ 1.18 \ (je \ d,\ 8\text{-}H_3),\ 10\text{-}H_3 \ und\ 12\text{-}H_3),\ 1.18 \ \text{-}\ 1.26 \ (je \ d,\ 13\text{-}H_3 \ und\ 15\text{-}H_3),\ 1.68 \ (m,\ 22\text{-}H),\ 1.82 \ (qqd,\ 5\text{-}H),\ 2.42 \ ("s",\ 20\text{-}H_3),\ 2.69 \ (dqd,\ 3\text{-}H),\ 3.68 \ (qq,\ 11\text{-}H),\ 4.00 \ (qq,\ 14\text{-}H),\ 4.72 \ (dd,\ 4\text{-}H),\ 6.78 \ (d,\ 2\text{-}H),\ 7.31 \ (m,\ 18\text{-}H_2),\ 7.79 \ (wie \ dt,\ 17\text{-}H_2). \end{array}$

 $J_{2,3} = 10.5$ Hz, $J_{3,4} = 4.5$ Hz, $J_{3,8} = 6.9$ Hz, $J_{4,5} = 8.0$ Hz, $J_{5,6} = J_{5,7} = 6.9$ Hz, $J_{11,10/12} = J14,13/15 = 6.9$ Hz.

75-MHz-¹³C-NMR (CDCl₃): 5 = 8.23 (t, C-23), 12.89 (d, C-22), 16.41 (C-8), 17.83 (C-6), 19.06 (C-7), 20.03 (C-10 und C-12), 21.15 (C-13 und C-15), 21.58 (C-20), 30.51 (C-5), 33.84 (C-3), 46.77 (C-11), 47.14 (C-14), 80.06 (C-4), 128.90 (C-17), 129.44 (C-18), 131.05 (C-2), 135.45 (C-16), 144.52 (C-19), 145.55 (C-1), 149.62 (C-9), 174.44 (C-21).

MS (CI, Isobutan) : $m/e = 494 (42.2\%, [M+1]^+), 128 (100\%, C_7H_{14}NO).$

C₂₆H₃₉NO₆S (493.67)

Ber. C 63.26 H 7.96 Gef. C 63.33 H 8.06

P 4 Umsetzung von 311 mit Vinylmagnesiumbromid/Kupfer(I)-cyanid

Zu 20 mg (0.21 mmol) Kupfer-(I)-cyanid, suspendiert in 2 mL THF, tropfte man bei -78 °C 0.95 mL (0.95 mmol) einer 0.95 M Lsg. von Vinylmagnesiumbromid in THF, rührte 30 min nach und injizierte dann eine Lsg. von 314 mg (0.63 mmol) **311** in 0.5 mL THF. Nachdem die dünnschichtchromatographische Analyse keine Umsetzung anzeigte, entfernte man das Kühlbad, worauf sich die Mischung schwarz färbte. Nach ammoniakalischer Aufarbeitung (10% Ammoniak, ges. Ammoniumchloridlsg., je 10 mL) konnte im Rohprodukt kapillargaschromatographisch lediglich das Ausgangsmaterial **31**1 nachgwiesen werden.

P 5 Umsetzung von 315 mit Tributylstannan/AIBN¹¹⁹⁾

342 mg (0.59 mmol) **315**, 259 mg (0.89 mmol) Tributylstannan und 5 mg (29 μ mol) AIBN wurden in 2 mL Benzol 2 h unter Rückfluß erhitzt. Danach zog man das Benzol i. Vak. ab, nahm in 10 mL 10% Kaliumfluoridlsg. und 10 mL Ether auf, erhitzte zum Sieden und filtrierte das ausgefallene Tributylzinnfluorid ab. Nachdem man den Niederschlag zweimal mit je 10 mL siedendem Ether extrahiert hatte, trocknete man über Magnesiumsulfat, zog das Solvens i. Vak. ab und chromatographierte an 36 g

-183-

Abwandlung

Kieselgel (E/P = 1:6).

Dabei isolierte man neben 45 mg (13%) des Ausgangsmaterials 161 mg (55%) **311** als farbloses Öl, dessen spektroskopische Daten mit denen in Kapitel **O 5.1** angegebenen übereinstimmten.

Q Synthese der chiralen Liganden

Q1 Allg. Arbeitsvorschrift zur Synthese der chiralen Sulfoxide^{26a,26b,63)}

Eine aus 1.4 - 5.0 Äquiv. Alkylhalogenid und 1.4 - 5.0 Äquiv. Magnesium in Ether (1 mL/mmol) bereitete *Grignard* - Lsg. wurde auf 0 °C gekühlt und langsam durch einen Polyethylenschlauch in eine auf 5 °C gekühlte Suspension von 1.0 Äquiv. (-)-Menthyl-*p*-toluol-sulfinat **38** in Benzol (1 mL/mmol) gepumpt. Nachdem die exotherme Reaktion abgeklungen und eine klare Lsg. entstanden war, entfernte man das Eisbad und rührte 2 - 12 h bei Raumtemp. nach. Anschließend hydrolysierte man durch vorsichtiges Eintragen der Reaktions-mischung in einen mit Ether und eiskalter, ges. Ammoniumchloridlsg. (jeweils 1 mL/mmol) beschickten Scheidetrichter. Nach Trennung der Phasen extrahierte man die wäßrige zweimal mit jeweils 0.5 mL/mmol Ether, wusch die vereinigten organischen Phasen mit ges. Kochsalzlsg. (0.5 mL/mmol), trocknete über Magnesiumsulfat und entfernte das Solvens i. Vak..

Die Reinigung des Rohproduktes erfolgte durch Chromatographie oder Kristallisation aus Hexan.

Q 1.1 (R)-Methyl-p-tolyl-sulfoxid (142)

Mit 33.8 g (0.12 mol) **38**, 3.3 g (0.14 mol, 1.2 Äquiv.) Magnesium und 22.9 g (0.16 mol, 1.4 Äquiv.) Methyliodid erhielt man nach Chromatographie an 360 g Kieselgel (erst E/P = 1:1, dann EE) 15.2 g (86%, Lit.^{26b)} nach Krist. 80%) **142** als weißen Festkörper vom Schmp. 71 °C (Lit.^{26ab,63)} 73 - 74 °C).

-187-

Chirale Liganden

Q 1.3 (*R*)-tert-Butyl-p-tolyl-sulfoxid (271)

Mit 8.0 g (27.2 mmol) **38**, 3.26 g (0.14 mol, 5.0 Äquiv.) Magnesium und 18.64 g (0.14 mol, 5.0 Äquiv.) *t*-Butylbromid erhielt man nach Chromatographie an 36 g Kieselgel (erst E/P = 1:2, dann EE) 4.21 g (79%) **271** als weißen Festkörper vom Schmp. 86 °C.

IR (KBr): 1040 cm-1 (S=O).

 $[\alpha]^{20}_{D} = +157.8 \ (c = 1.61 \ Aceton).$

60-MHz-¹H-NMR (CDCl₃): δ = 1.15 (s, 1-H₉), 2.40 (s, 7-H₃), 7.19, 7.40 (wie AB, 4-H und 5-H).

75-MHz-¹³C-NMR (CDCl₃): δ = 21.34 (C-7), 22.73 (C-1), 55.51 (C-2), 126.14 (C-4), 128.97 (C-5), 136.81 (C-3), 141.37 (C-6).

C11H16OS (196.31)

Ber. C 67.30 H 8.22 Gef. C 67.23 H 8.26

Q 2 Allg. Arbeitsvorschrift zur Synthese der Sulfoximide mit MSH⁵⁸⁾

In eine Lösung von 1.4 Äquiv. *O*-Mesitylensulfonylhydroxylamin (MSH) in Dichlormethan (1 mL/mmol), gab man rasch 1.0 Äquiv. des betreffenden Sulfoxides, gelöst in

 $R_F = 0.19 (EE/P = 3:1)$

 $[\alpha]^{20}_{D}$ = +161.6 (c = 1.8, Aceton) ; Lit.^{26b)} +146 (c = 2.0 Aceton)^{*}

*Durch Kristallisation erhaltene Präparate enthalten stets wechselnde Mengen Menthol $[\alpha]^{20}{}_{\rm D} = -50.0, c = 10$, Ethanol), die die optische Drehung der Probe entsprechend beeinflussen.

90-MHz-¹H-NMR (CDCl₃): $\delta = 2.4$ (s, 4-H₃), 2.67 (s, 1-H₃), 7.31, 7.55 (wie AB, 2-H₂ und 3-H₂).

Q 1.2 (R)-lsopropyl-p-tolyl-sulfoxid (143)

Mit 29.4 g (0.10 mol) **38**, 4.14 g (0.18 mol, 1.8 Äquiv.) Magnesium und 24.6 g (0.20 mol, 2.0 Äquiv.) 2-Iodpropan erhielt man nach Chromatographie (150 g Kieselgel, erst E/P = 1:2, dann EE) 15.6 g (86%, Lit.⁶³⁾ 79%) **143** als farbloses Öl.

 $R_F = 0.36 (EE/P = 3:1)$

 $[\alpha]^{20}_{D}$ = +183.4 (c = 1.3, Aceton), Lit.⁶³⁾ +172.5 (c = k.A., Aceton).

90-MHz-'H-NMR (CDCl₃): δ = 1.11 (d, 1-H₃), 1.18 (d, 3-H₃), 2.39 (s, 6-H₃), 2.78 (qq, 2-H), 7.30, 7.51 (wie AB, 4-H und 5-H).

 $J_{1,2} = J_{2,3} = 7$ Hz

0.3 mL/mmol Dichlormethan, wobei man mit Hilfe eines Eisbades ein Ansteigen der Temp. über 25 °C verhinderte. Nach Abklingen der exothermen Reaktion rührte man 2 - 12 h bei Raumtemp. nach, goß dann das Reaktionsgemisch auf eiskalte 10proz. Natronlauge (2 mL/mmol) und rührte heftig bis zur weitgehenden Klärung der Phasen (etwa 15 min; evtl. ist ein Zusatz von bis zu 1 mL/mmol Wasser nötig). Dann extrahierte man die wäßrige Phase dreimal mit Chloroform (je 2 mL/mmol) und einmal mit 2 mL/mmol Ether.

Variante A:

Die vereinigten organischen Extrakte wurden über Magnesiumsulfat getrocknet, das Solvens i. Vak. entfernt und die erhaltenen Rohprodukte ohne weitere Reinigung eingesetzt.

Variante B:

Die organischen Phasen wurden i. Vak. vom Solvens befreit, der Rückstand in EE (2 mL/mmol) aufgenommen und zweimal mit 10proz. Salzsäure (2 mL/mmol) ausgeschüttelt. Die wäßrige Phase wurde abgetrennt, mit festem Kaliumcarbonat bis zur alkalischen Reaktion versetzt und dreimal mit EE (2 mL/mmol) extrahiert. Die vereinigten organischen Extrakte wurden über Magnesiumsulfat getrocknet, das Solvens i. Vak. entfernt und der Rückstand ohne weitere Reinigung eingesetzt.

Q 2.1 (R)-Methyl-p-tolyl-sulfoximid (168)

Mit 1.53 g (9.94 mmol) **142** und 2.99 g (13.93 mmol) MSH erhielt man nach **Variante B** 1.53 g eines farblosen Öles, welches laut kapillargaschromatographischer Analyse aus 6 - 10% **142** und 94 - 90% **168** bestand.

<u>Anmerkung:</u> In Abhängigkeit von der Qualität des eingesetzten MSH schwankten die Ausbeuten an **168** in Ansätzen zwischen 5.0 mmol und 30.0 mmol zwischen 65 und 90%.

 $R_F = 0.24$ (EE/P = 3:1); $R_t = 5.0 \text{ min (160 °C, iso)}$.

 $[\alpha]^{20}_{D}$ = -36.0* (c = 1.07 Aceton), Lit.⁵⁸⁾ -31.9 (c = 3.0 Aceton).

*Nach säulenchromatographischer Reinigung.

IR (Film): 3270 (NH), 1220, 1110 cm⁻¹ (N=S=O).

60-MHz-¹H-NMR (CDCl₃): δ = 2.40 (s, 9-H₃), 2.90 (s, NH), 3.10 (s, 1-H₃), 7.25, 7.81 (wie AB, 3-H₂ und 2-H₂). $J_{ortho} \approx 8.5$ Hz

Q 2.2 (R)-Isopropyl-p-tolyl-sulfoximid (210)

Mit 4.20 g (23.1 mmol) **143** und 6.94 g (32.3 mmol) MSH erhielt man nach **Variante B** (12 h Reaktionsdauer) 4.41 g (97%) dünnschichtchromatographisch und ¹H-NMR-spektroskopisch einheitliches **210** als leicht gelb gefärbtes Öl.

 $[\alpha]^{20}_{D} = -17.2^*$ (c = 1.24, Aceton), Lit ⁵⁸⁾ -17.1 (c = 1.01, Aceton).

*Nach säulenchrom. Reinigung.

60-MHz-¹H-NMR (CDCl₃): δ = 1.25 (d, 1-H₃), 1.32 (d, 3-H₃), 2.41 (s, 6-H₃), 2.55 (br., N*H*), 3.20 (qq, 2-H), 7.25, 7.77 (wie AB, 5-H₂ und 4-H₂).

 $J_{1,2} = J_{2,3} = 7 \text{ Hz}$

Q 2.3 (R)-tert-Butyl-p-tolyl-sulfoximid (272)

Mit 0.99 g (5.05 mmol) **271** und 1.52 g (7.07 mmol) MSH erhielt man nach **Variante A** und Chromatographie an 70 g Kieselgel (EE/P = 1:1) neben 120 mg (12%) Ausgangsmaterial 656 mg (62%) **272** als weißen Festkörper vom Schmp. 68 °C (E/P = 1:1).

 $[\alpha]^{20}_{D} = -15.6 \text{ (c} = 1.68 \text{ Aceton}).$

IR (Film) : 3285 (NH), 1220, 1100 cm⁻¹ (N=S=O).

60-MHz-¹H-NMR (CDCl₃): δ = 1.40 (s, 1-H₉), 2.45 (s, 7-H₃), 2.52 (s, N*H*), 7.30, 7.81 (wie AB, 5-H₂ und 4-H₂).

C11H17NOS (211.33)

Ber. C 62.52 H 8.11 Gef. C 62.46 H 8.09

Q 2.4 (S,S)-S-(p-Tolyl)-S-(p-toluolsulfinylmethyl)sulfoximid (166)

Mit 1.04 g (3.56 mmol) **141** (Abschnitt **Q 4.1**) und 1.07 g (4.98 mmol) MSH erhielt man nach **Variante A** (Reaktionszeit 23 h) und säulenchromatographischer Reinigung an 70 g Kieselgel (EE/P = 1:1) 0.86 g (79%) **166** als farbloses Öl.

 $R_F = 0.35 (EE/P = 3:1).$

 $[\alpha]_{D}^{20} = +226.5 \text{ (c} = 1.29 \text{ Aceton)}.$

IR (Film) : 3270 (NH), 1240, 1100 (N=S=O), 1045 cm⁻¹ (S=O).

300-MHz-¹H-NMR (CDCl₃): δ = 2.406 ("s", 11-H₃), 2.453 ("s", 6-H₃), 3.51 (br., N*H*), 4.239, 4.299 (AB, 1-H₂), 7.2 - 7.4 (m, 4-H₂ und 9-H₂), 7.56 (wie dt, 8-H₂), 7.96 (wie dt, 3-H₂). $J_{\text{ortho}} \approx 8.5 \text{ Hz}$

75-MHz-¹³C-NMR (CDCl₃): δ = 21.14 (C-6), 21.31 (C-11), 83.87 (C-1), 123.94 (C-8), 128.50 (C-3), 129.56 (C-4), 129.89 (C-9), 137.52 (C-2), 139.26 (C-7), 142.11 (C-10), 144.44 (C-5).

MS (CI, Isobutan) : m/e = 308 (100%, [M+1]+).

 $C_{15}H_{17}NO_2S_2$ (307.45)

Ber. C 58.60 H 5.57 Gef. C 58.75 H 5.65

-192-

Q 2.5 Umsetzungen des Bissulfoxides 144 mit MSH

Q 2.5.1 Bei Raumtemp.: (S,S)-S-(p-Tolyl)-S-[1-methyl-(p-toluolsulfinylethyl)]sulfoximid (163)

Abweichend von der allg. Arbeitsvorschrift erhielt man mit 188 mg (0.58 mmol) **144** und 464 mg (2.16 mmol, 3.7 Äquiv.) MSH in 1 mL Methanol nach 6 h bei Raumtemp. und säulenchromatographischer Reinigung (36 g Kieselgel, EE/P; erst 1:1, dann 2:1) 145 mg (75%) **163** als farbloses Öl.

 $R_F = 0.43$ (EE/P = 3:1).

IR (Film): 3280 (NH), 1230, 1100 (N=S=O), 1040 cm⁻¹ (S=O).

 $[\alpha]_{D}^{20} = +208.8 (c = 1.2 \text{ Aceton}).$

90-MHz-¹H-NMR (CDCl₃): $\delta = 1.20$ (s, 12-H₃), 1.31 (s, 13-H₃), 2.36 ("s", 11-H₃), 2.40 ("s", 6-H₃), 3.3 (br., NH), 7.2 - 7.4 (m, 4-H₂ und 9-H₂), 7.57 (wie dt, 8-H₂).

 $C_{17}H_{21}NO_2S_2(335.49)$

Ber. C 60.86 H 6.31 Gef. C 60.71 H 6.24

Q 2.5.2 Bei 60 °C : (*R*)-*S*-(*p*-Tolyl)-*S*-(1-methylvinyl)sulfoximid (164)

75 mg (0.23 mmol) **144** und 150 mg (0.70 mmol) MSH wurden in 2 mL Benzol 24 h auf 60 °C erhitzt. Nach dem Abkühlen arbeitete man gemäß der allg. Arbeitsvorschrift auf, chromatographierte an 8 g Kieselgel (EE/P = 1:1) und erhielt 48 mg (89%) **164** als farbloses Öl.

-193-

 $R_F = 0.35 (EE/P = 3:1).$

 $[\alpha]_{D}^{20} = +25.5 \text{ (c} = 1.76, \text{MeOH)}.$

IR (Film): 3205, 3150 (NH), 1235, 1125, 1105 cm-¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃): δ = 1.99 (dd, 3-H₃), 2.43 ("s", 8-H₃), 5.64 (dq, 2-H'), 6.26 (dq, 2-H), 7.32 (m, 6-H₂), 7.84 (wie dt, 5-H₂).

 $J_{2',3} = 1.6$ Hz, $J_{2,2'} = 1.6$ Hz, $J_{2,3} = 0.9$ Hz.

75-MHz-¹³C-NMR (CDCl₃): δ = 16.99 (C-3), 21.47 (C-8), 122.78 (C-2), 128.44 (C-5), 129.58 (C-6), 137.33 (C-4), 143.63 (C-7), 148.18 (C-1).

MS (CI, Isobutan): $m/e = 196 (100\%, [M+1]^+)$.

C₁₀H₁₃NOS (195.28)

Ber. 196.0796 Gef. 196.0792

Q 2.6 Umsetzung von 170 mit MSH

Eine Mischung aus 0.67 g (3.11 mmol) MSH und 0.82 g (2.07 mmol) **170** in 5 mL Dichlormethan wurde 14 h bei Raumtemp. gerührt, gemäß der allg. Arbeitsvorschrift (Abschnitt **Q 2**) aufgearbeitet und an 36 g Kieselgel chromatographiert (erst EE/P = 1:1, dann EE/P = 3:1; jeweils 450 mL). Dabei erhielt man 251 mg (31%) des Ausgangsmaterials, 207 mg (34%) **141** (100% *ee*; durch Drehwertvergleich ermittelt) und 104 mg (16%) **166** mit $[\alpha]^{20} = +189.1$ (c = 1.10, Aceton).

Q 3 Synthese der N-geschützten Sulfoximide

Q 3.1 Darstellung von (R)-S-Methyl-N-(2-propenyl)-S-(p-tolyl)-sulfoximid (192)

Zu einer auf -20 °C gekühlten Lsg. von 0.56 g (5.0 mmol) KTB in 5 mL THF tropfte man 0.56 g (max. 3.3 mmol) ungereinigtes **168** in 3 mL THF, rührte 15 min nach und injizierte dann 0.60 g (5.0 mmol) Allylbromid. Nach weiteren 5 min bei -20 °C entfernte man das Kühlbad und rührte 3.5 h bei Raumtemp. Anschließend goß man die Reaktionsmischung auf 20 mL Eiswasser, extrahierte zweimal mit je 20 mL Chloroform und einmal mit 20 mL Ether, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und isolierte nach Chromatographie an 36 g Kieselgel (E/P = 1:1) 0.56 g (81%, bez. auf Sulfoxid **142**) **192** als farbloses Öl.

$$\begin{split} & [\alpha]^{20}{}_{\rm D} = -132.3 \ ({\rm c} = 1.42 \ {\rm Aceton}). \\ & {\rm IR} \ ({\rm Film}): \ 1220, \ 1110 \ {\rm cm}^{-1} \ ({\rm N}=\!\!{\rm S}=\!\!{\rm O}). \\ & 60{\rm -MHz}^{-1}{\rm H}{\rm -NMR} \ ({\rm CDCl}_3): \ \delta = 2.46 \ ({\rm s}, \ 6{\rm -H}_3), \ 3.10 \ ({\rm s}, \ 1{\rm -H}_3), \ 3.5 \ ({\rm m}, \ {\rm AB}{\rm -Teil}), \ 5.0 \ ("d", \ 8{\rm -H}), \\ & 5.3 \ ("d", \ 9{\rm -H}), \ 5.9 \ ({\rm ddt}, \ 7{\rm -H}), \ 7.3, \ 7.78 \ ({\rm wie} \ {\rm AB}, \ 4{\rm -H}_2 \ {\rm und} \ 3{\rm -H}_2). \\ & J_{7,8} = 9.6 \ {\rm Hz}, \ J7,9 = 16.8 \ {\rm Hz}, \ J_{7,{\rm A(B)}} = 5.3 \ {\rm Hz}. \end{split}$$

C₁₁H₁₅NOS (209.32)

Ber. C 63.12 H 7.22 Gef. C 63.06 H 7.25

Q 3.2 Darstellung von (R)-N-Benzyl-S-methyl-S-(p-tolyl)sulfoximid (169)

In eine auf 0 °C gekühlte Lsg. von 2.06 g (18.5 mmol) KTB in 30 mL THF tropfte man 2.07 g (max. 12.3 mmol) rohes **168**, gelöst in 5 mL THF, rührte 30 min nach und injizierte dann 3.15 g (18.5 mmol) Benzylbromid. Nach weiteren 30 min entfernte man das Eisbad, rührte 16 h bei Raumtemp. und goß die Reaktionsmischung dann auf 20 mL eiskalte, ges. Ammoniumchloridlsg.. Man extrahierte die wäßrige Phase zweimal mit jeweils 20 mL Ether, trocknete über Magnesiumsulfat, chromatographierte an 36 g Kieselgel (E/P = 3:2) und isolierte 2.39 g (75%; bez. auf **142**) **169** als farbloses Öl.

 $R_F = 0.12 (E/P = 2:1); 0.49 (EE/P = 3:1).$

 $[\alpha]^{20}_{D} = -90.3 \ (c = 2.5 \ Aceton).$

-196-

IR (Film): 1220, 1110 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃): δ = 2.448 ("s", 6-H₃), 3.141 (s, 1-H₃), 3.962, 4.184 (AB von ABM₂, 7-H₂), 7.1 - 7.4 (m, Aryl-H), 7.80 (wie dt, 3-H₂). J_{AB} = 14.3 Hz, $J_{7.9}$ = 0.6 Hz.

75-MHz-¹³C-NMR (CDCl₃): δ = 21.31 (C-6), 45.06 (C-7), 47.15 (C-1), 126.24, 127.39, 141.03 (Phenyl-C), 128.47 (C-3), 129.86 (C-4), 130.02 (C-2), 143.54 (C-5).

C15H17NOS (259.37)

Ber. C 69.46 H 6.61 Gef. C 69.42 H 6.69

Q 3.3 (S,S)-N-Acetyl-S-(p-tolyl)-S-(p-toluolsulfinylmethyl)sulfoximid (167)

2.06 g (max. 6.7 mmol) ungereinigtes, gemäß den Angaben in Abschnitt **Q** 2 aus 1.96 g (6.7 mmol) **141** synthetisiertes **166** wurde in 10 mL Dichlormethan bei 0 °C zunächst mit 0.79 g (10.0 mmol) Pyridin und dann mit 1.37 g (13.4 mmol) Acetanhydrid versetzt. Man entfernte das Eisbad, rührte 24 h bei Raumtemp. nach, goß die Reaktionsmischung auf 20 mL 2N Salzsäure und 30 mL Ether, extrahierte zweimal mit je 20 mL Ether, entsäuerte mit ges. Natriumhydrogencarbonatlsg. (2mal mit jeweils 20 mL), trocknete über Magnesiumsulfat und reinigte das Produkt durch Chromatographie an 36 g Kieselgel (E/P = 1:1), wobei man 1.77 g (71%, bez. auf **141**) **167** als farbloses Öl erhielt.

Chirale Liganden

 $[\alpha]^{20}_{D} = +283.1 \text{ (c} = 3.58 \text{ Aceton}).$

60-MHz-¹H-NMR (CDCl₃): δ = 2.00 (s, 13-H₃), 2.17 (s, 11-H₃), 2.20 (s, 6-H₃), 4.17, 4.87 (AB, 1-H₂), 6.8 - 7.4 (m, Aryl-H), 7.70 (wie dt, 3-H₂). $J_{AB} = 13.5$ Hz

75-MHz-¹³C-NMR (CDCl₃): δ = 21.42 (C-11), 21.74 (C-6), 27.05 (C-13), 79.72 (C-1), 127.96, 123.92 (C-8), 128.7 (C-3), 130.17 (C-4), 130.30 (C-9), 133.42 (C-2), 138.88 (C-7), 142.54

(C-10), 145.97 (C-5), 180.87 (C-12).

C₁₇H₁₉NO₃S₂ (349.48)

Ber. C 58.43 H 5.48 Gef. C 58.61 H 5.60

Q 3.4 (*S*,*S*)-*S*-(*p*-Tolyl)-*S*-(*p*-toluolsulfinylmethyl)-*N*-(*p*-toluolsulfonyl)sulfoximid (180)

292 mg (1.0 mmol) **141**, 125 mg (2.0 mmol) Raney-Kupfer und 400 mg (2.0 mmol) Tosylazid wurden in 3.0 mL Methanol 18 h unter Rückfluß erhitzt. Anschließend wurde das Solvens i. Vak. entfernt, der Rückstand in 5 mL EE aufgenommen, filtriert, erneut vom Solvens befreit und säulenchromatographisch an 36 g Kieselgel (EE/P = 1:1) gereinigt. Man erhielt 89 mg (19%) **180** als farbloses Öl.

 $R_F = 0.65$ (EE/P=3:1).
-198-

 $[\alpha]^{20}_{D} = +216.0 \ (c = 2.94 \ CH_2Cl_2).$

60-MHz-¹H-NMR (CDCl₃): $\underline{\delta}$ = 2.35 (s, 3-H₆), 2.47 (s, 2-H₃), 4.56, 5.17 (AB, l-H₂), 7.1 - 8.1 (m, Aryl-H).

 $J_{AB} = 13.0$ Hz.

75-MHz-¹³C-NMR (CDCl₃): δ = 21.44, 21.51, 21.79 (C-2 und C-3), 81.54 (C-1), 124.13, 126.67, 128.88, 129.29, 130.30, 130.35, 132.53, 138.69, 140.44, 142.68, 143.12, 146.70, (Aryl-C).

MS (CI, Isobutan) : $m/e = 462 (51.5\%, [M+1]^+)$.

C22H23NO4S3 (461.63)

Ber. 462.0867 Gef. 462.0853

Q 3.5 (R)-S-Methyl-S-(p-tolyl)-N-phthalimido-sulfoximid (183)

In eine Lsg. von 0.76 g (4.93 mmol) **142** und 0.96 g (5.91 mmol) *N*-Aminophthalimid (Fluka) in 25 mL Chloroform gab man portionsweise 2.84 g (6.41 mmol) Bleitetraacetat ($T \le 30$ °C), rührte 1 h bei Raumtemp. nach und goß die Reaktionsmischung dann auf 20 mL Wasser. Nach dreimaliger Extraktion mit jeweils 10 mL Chloroform entsäuerte man mit ges. Natriumhydrogencarbonatlsg. (10 mL), trocknete über Magnesiumsulfat und reinigte den nach Entfernung des Solvens i. Vak. erhaltenen Rückstand säulenchromatographisch an 36 g Kieselgel (EE/P = 3:2). Dabei isolierte man 0.98 g (63%) **183** als weißen Festkörper vom Schmp. 149 °C (EE/P).

 $R_F = 0.42$ (EE/P = 3:1).

 $[\alpha]^{20}_{D} = -181.0 \ (c = 1.0, CH_2Cl_2).$

IR (KBr): 1780, 1740, 1720, 1715 (C=O), 1220, 1090 (N=S=O).

300-MHz-¹H-NMR (CDCl₃): δ = 2.442 (s, 6-H₃), 3.345 (s, 1-H₃), 7.39 (m, 4-H₂), 7.656, 7.764 (AA'BB'-System), 8.11 (wie dt, 3-H₂). AA'BB'-System (LAOCOON III, RMS-Error = 0.069; s. a. Abb. 3, Kapitel **F 3.2**).

Berechnet: Input - Parameter:

$\nu_A = \nu_{A'} = 7.764 \text{ ppm}$	7.762 ppm
$\nu_B=\nu_{B'}=7.656\ ppm$	7.658 ppm
$J_{\rm AA}' = 7.68 \; {\rm Hz}$	7.52 Hz
$J_{\rm AB} = J_{\rm A'B'} = 7.44 \text{ Hz}$	8.07 Hz
$J_{\rm AB'} = J_{\rm A'B} = 1.00 \text{ Hz}$	1.53 Hz
$J_{\rm BB'} = 0.77 \; {\rm Hz}$	0.31 Hz

75-MHz-¹³C-NMR (CDCl₃): δ = 21.57 (C-6), 42.57 (C-1), 122.94 (C-9), 129.37 (C-3),

-200-

129.88 (C-4), 130.57 (C-8), 133.28 (C-2), 133.78 (C-10), 145.24 (C-5), 166.86 (C-7).

MS (CI, Isobutan) : $m/e = 315 (100\%, [M+1]^+)$.

C16H14N2O3S (314.37)

Ber. C 61.13 H 4.49 Gef. C 61.18 H 4.52

Q 3.6 (S,S)-N,N'-Bis(phthalimido)-bis(p-toluolsulfonimidoyl)methan (181)

In eine Suspension von 0.78 g (4.80 mmol) *N*-Aminophthalimid in 30 mL Chloroform fügte man 0.29 g (1.0 mmol) **141**, gelöst in 2 mL Chloroform, rührte 2 min nach und versetzte portionsweise mit 2.31 g (5.2 mmol) Bleitetraacetat. Nach 3 h arbeitete man wie bei **Q 6.5** beschrieben wäßrig auf und isolierte nach Chromatographie an 36 g Kieselgel (EE/P = 1:1) 0.53 g eines 3:2 Gemisches aus **181** und dem Monosulfoximid **182**, aus welchem sich letzteres durch Extraktion mit siedendem Ethanol quant. abtrennen ließ. Der Rückstand bestand aus 138 mg (23%) 181 vom Schmp. 150 °C (Ethanol).

 $[\alpha]^{20}_{D} = -86.2 \ (c = 1.15, CH_2Cl_2).$

IR (KBr): 1785, 1720, 1715 (C=O), 1230, 1100 cm-¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃): $\delta = 2.42$ ("s", 6-H₆), 5.47 (s, 1-H₂), 7.32 (m, 4-H₄), 7.68 - 7.86 (AA'BB', 9-H₄ und 10-H₄), 7.97 (wie dt, 3-H₄).

-201-

75-MHz-¹³C-NMR (CDCl₃): <u>δ</u> = 21.73 (C-6), 74.35 (C-1), 123.23 (C-9), 129.86 (C-3), 129.89 (C-4), 130.09 (C-8), 130.72 (C-10), 133.98 (C-2), 146.31 (C-5), 166.50 (C-7).

MS (FAB, 3-Nitrobenzylalkohol) : $m/e = 613 (2.3\%, [M+1]^+)$.

 $C_{31}H_{24}N_4O_6S_2$ (612.69)

Ber. C 60.77 H 3.95 Gef. C 60.69 H 4.04.

Q 3.7 Allg. Arbeitsvorschrift zur Synthese der N-tert-Butyloxycarbonylsulfoximide

1.0 Äquiv. des Sulfoximides (rein, bzw. Rohprodukt der Iminierung des zugrunde-liegenden Sulfoxides; **Q** 2) wurden bei 0 °C in THF (1 mL/mmol) vorgelegt, mit 1.20 - 1.25 Äquiv. KTB (gelöst in 0.5 mL/mmol THF) 30 min lang deprotoniert und dann mit einer Lsg. von 2.0 Äquiv. BOC-Anhydrid in THF (2 mL/mmol) versetzt. Dabei nahm die Reaktionsmischung eine gelartige Konsistenz an und wurde erst nach Erwärmen auf auf Raumtemp. wieder rührbar (bei Ansätzen > 10 mmol KPG - System verwenden). Nach 16 std. Rühren bei Raumtemp. goß man die Mischung auf eiskalte, ges. Ammoniumchloridlsg. (5 mL/mmol), extrahierte zweimal mit jeweils 2 mL/mmol EE, trocknete über Magnesiumsulfat und chromatographierte nach Entfernung des Solvens i. Vak. an Kieselgel (erst EE/P = 1:2, dann EE/P = 2:1).

 $R_F = 0.56 (E/P=2:1).$

Q 3.7.1 (*R*)-*N*-(*tert*-Butyloxycarbonyl)-*S*-methyl-*S*-(*p*-tolyl)sulfoximid (201)

Mit 0.32 g (1.90 mmol) reinem **168** erhielt man 0.47 g (92%) **201** als weißen Festkörper vom Schmp. 99 °C (EE/P).

Mit 1.52 g (max. 9.00 mmol) ungereinigtem **168** (aus 1.53 g (9.94 mmol) **142** gemäß **Q 2** (Variante B) synthetisiert) erhielt man 2.11 g (79%, bez. auf **142**) **201**.

 $R_F = 0.55$ (EE/P = 3:1).

 $[\alpha]_{D}^{20} = -77.8 \ (c = 2.09, \text{ Aceton}).$

IR (KBr) : 1670 (C=O), 1280, 1250, 1220 cm⁻¹ (N=S-O).

60-MHz-¹H-NMR (CDCl₃) : δ = 1.39 (s, 9-H₉), 2.43 ("s", 6-H₃), 3.17 (s, 1-H₃), 7.29 (m, 4-H₂), 7.78 (wie dt, 3-H₂).

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.50 (C-6), 28.02 (C-9), 44.80 (C-1), 80.08 (C-8), 127.28 (C-3), 130.11 (C-4), 135.86 (C-2), 144.55 (C-5), 157.47 (C-7).

MS (CI, Isobutan) : $m/e = 270 (21.6\%, [M+1]^+)$.

 $C_{13}H_{19}NO_3S$ (269.37)

Ber. C 57.97 H 7.11 Gef. C 58.00 H 7.18. Q 3.7.2 (R)-N-(tert-Butyloxycarbonyl)-S-isopropyl-S-(p-tolyl)sulfoximid (211)

Mit 4.41 g (max. 22.4 mmol) **210** (aus 4.20 g (23.1 mmol) **143** gemäß **Q 2**, Variante B synthetisiert) erhielt man 4.91 g (72%, bez. auf **143**) **211** als weißen Festkörper vom Schmp. 84 °C (EE/P).

-203-

 $[\alpha]_{D}^{20} = -97.1 \text{ (c} = 1.98 \text{ Aceton)}.$

IR (KBr): 1670 (C=O), 1220 (N=S=O).

60-MHz-¹H-NMR (CDCl₃) : $\delta = 1.12$ (d, 2-H₃), 1.32 (s, 10-H₉), 1.37 (d, 3-H₃), 2.38 ("s", 8-H₃), 3.37 (qq, 1-H), 7.40 (m, 6-H₂), 7.80 (wie dt, 5-H₂).

 $J_{1,2} = J_{1,3} = 7$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 15.12 (C-2), 15.83 (C-3), 21.52 (C-8), 28.02 (C-10), 56.20 (C-1), 79.80 (C-9), 128.90 (C-5), 129.90 (C-6), 132.15 (C-4), 144.40 (C-7), 157.85 (C-11).

C₁₅H₂₃NO₃S (297.42)

Ber. C 60.58 H 7.79 Gef. C 60.61 H 7.89 -204-

Q 4 Allgemeine Arbeitsvorschrift zur Synthese methylenverbrückter Bissulfoxide, Sulfinylsulfoximide und Bissulfoximide

3.3 Äquiv. (bez. auf die CH-acide Komponente) Hexamethyldisilazan wurden in THF (1 mL/mmol) bei -78 °C mit 3.3 Äquiv. einer ca. 1.6 M Lsg. von *n*-BuLi in Hexan versetzt. Anschließend erwärmte man auf 0 °C (dabei geht evtl. ausgefallenes LHMDS wieder in Lösung), kühlte dann erneut auf -78 °C, tropfte eine Lösung des betreffenden Sulfoxids bzw. Sulfoximids in THF (0.5 mL/mmol) so hinzu, daß die Innentemp. -65 °C nicht überschritt. Dann rührte man 30 min. bei -22 °C (Tetrachlormethan / Trockeneis) nach, kühlte dann auf – 78 °C , tropfte 1.1 Äquiv. des Elektrophils, gelöst in 0.7 mL/mmol THF, langsam hinzu und rührte 1 h bei -78 °C nach. Zur Aufarbeitung versetzte man die Reaktionsmischung bei dieser Temp. mit 0.8 mL/mmol 50% Essigsäure, entfernte das Kühlbad und goß den Kolbeninhalt auf eine Mischung aus EE und ges. Kochsalzlsg. (jeweils 1.5 mL/mmol). Man extrahierte die wäßrige Phase zweimal mit je 1 mL/mmol EE, entsäuerte mit ges. Natriumhydrogencarbonatlsg. (1 mL/mmol) und trocknete die vereinigten organischen Extrakte über Magnesiumsulfat.

Die Reinigung des nach Entfernung des Solvens i. Vak. erhaltenen Rohproduktes, erfolgte durch Kristallisation oder Säulenchromatographie an Kieselgel.

Q 4.1 (*S*,*S*)-Bis(*p*-toluolsulfinyl)methan (141)

Mit 15.4 g (0.10 mol) **142** und 32.3 g (0.11 mol) **38** erhielt man nach Kristallisation des Rohproduktes aus ca. 80 mL EE 18.6 g (64%) **141** als weißen Festkörper. Aus der Mutterlauge ließen sich durch Destillation 10.21 g (60%) Menthol und durch anschließende Chromatographie an 70 g Kieselgel (erst E/P = 1:1, dann EE) weitere 8.0 g (27%) Produkt isolieren, womit man insgesamt 26.6 g (91%) **141** erhielt.

Verwandte man anstelle des LHMDS als Base 5.0 Äquiv. KTB, isolierte man unter sonst gleichen Bedingungen in 89% Ausbeute ein Diastereomerengemisch bestehend aus 70% *meso*-**141** und 30% **141** (¹H-NMR-spektroskopisch bestimmt).

 $R_F = 0.29$ (EE/P = 3:1), weißer Festkörper Schmp. 134 °C (EE).

 $[\alpha]^{20}_{D} = +318.0 \text{ (c} = 1.2, \text{ Aceton}).$

IR (KBr) : 1040 cm^{-1} (S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 2.367 ("s", 6-H₃), 3.967 (s, 1-H₂), 7.268 (m, 4-H₄), 7.531 (wie dt, 3-H₄).

meso-141: 60-MHz-¹H-NMR (CDCl₃) : δ = 2.4 ("s", 6-H₃), 4.01, 4.21 (AB, 1-H₂), 7.25, 7.52 (wie AB, 4-H₄ und 3-H₄). $J_{AB} = 12.5$ Hz, $J_{ortho} \approx 8.5$ Hz

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.34 (C-6), 83.71 (C-1), 123.94 (C-3), 130.14 (C-4), 139.52 (C-2), 142.15 (C-5).

MS (CI, Isobutan) : m/e = 293 (100%, [M+1]⁺).

C15H16O2S2 (292.42)

Ber. C 61.61 H 5.52 Gef. C 61.77 H 5.56

Q 4.2.1 (R,S)-p-Toluolsulfinylethyl-[1-methyl-1-(p-tolyl)]sulfoxid (meso-144)

Abweichend von der allg. Arbeitsvorschrift erhielt man mit 182 mg (1.0 mmol) **143** nach Deprotonierung mit 0.68 mL (1.1 mmol) 1.62 M *n*-BuLi in Hexan und

Chromatographie an 36 g Kieselgel (EE/P = 1:1) 220 mg (68%) *meso-144* als weißen Festkörper vom Schmp. 130 °C (EE/P).

 $[\alpha]^{20}_{D} = 0$ (c = 1.2, Aceton)

IR (KBr) : 1045 cm-1 (S=O).

90-MHz-¹H-NMR (CDCl₃) : δ = 1.00 (s, 7-H₃), 1.45 (s, 8-H₃), 2.41 ("s" 6-H₆), 7.32, 7.60 (wie AB, 3-H₄ und 4-H₄).

75-MHz-¹³C-NMR (CDCl₃) : δ = 12.92 (C-7), 13.68 (C-8), 21.48 (C-6), 79.78 (C-1), 126.3 (C-3), 129.52 (C-4), 135.22 (C-2), 142.55 (C-5).

C17H20O2S2 (320.48)

Ber. C 63.71 H 6.29 Gef. C 63.73 H 6.30

Q 4.2.2 (*S*,*S*)-*p*-Toluolsulfinylethyl-[1-methyl-1-(*p*-tolyl)]sulfoxid (144)

Zu 1.73 g (15.4 mmol) KTB in 20 mL. THF tropfte man bei -22 °C eine Lösung von 2.05 g (7.0 mmol) **141** in 15 mL THF. Man rührte 30 min nach, injizierte 2.19 g (15.4 mmol) Methyliodid, entfernte nach weiteren 30 min das Kühlbad und rührte 2 h bei Raumtemp.. Zur Aufarbeitung goß man auf 15 mL Wasser, engte i. Vak. auf 1/5 des ursprünglichen Volumens ein, nahm in 20 mL EE und 20 mL Wasser auf, extrahierte

zweimal mit jeweils 10 mL EE und trocknete über Magnesiumsulfat. Das nach Entfernung des Solvens i. Vak. erhaltene Rohprodukt (ca. 1:1 Gemisch der mono- und dialkylierten Verbindung; ¹H-NMR-spektroskopisch bestimmt) wurde erneut mit 0.78 g (7.0 mmol) KTB und 0.99 g (7.0 mmol) Methyliodid umgesetzt. Nach wäßriger Aufarbeitung isolierte man nach Chromatographie an 70 g Kieselgel neben 0.24 g (11%) *meso-***144** 1.44 g (64%) **144** als weißen Festkörper vom Schmp. 131 °C (EE/P).

<u>Anmerkung</u>: Die Reinigung des Rohproduktes durch Kristallisation ist nicht zu empfehlen, da hierbei eine Anreicherung des *meso* - Diastereomeren erfolgt.

 $R_F = 0.43$ (EE/P = 3:1), R_F (Monomethyl) = 0.40 (EE/P = 3:1).

 $[\alpha]_{D}^{20} = +347.5 \text{ (c} = 1.1, \text{ Aceton}).$

IR (KBr) : 1055 (S=O).

60-MHz-¹H-NMR (CDCl₃) : δ = 1.10 (s, 7-H₃ und 8-H₃), 2.44 ("s", 6-H₆), 7.27, 7.52 (wie AB, 4-H₄ und 3-H₄).

75-MHz-¹³C-NMR (CDCl₃) : δ = 12.96 (C-7 und C-8), 21.40 (C-6), 82.38 (C-1), 126.36 (C-3), 129.48 (C-4), 142.50 (C-5).

 $C_{17}H_{20}O_2S_2$ (320.48)

Ber. C 63.71 H 6.29 Gef. C 63.58 H 6.34

Chirale Liganden

Q 4.3 (S,S)-N-Benzyl-S-(p-tolyl)-S-(p-toluolsulfinylmethyl)sulfoximid (170)

Mit 1.30 g (5.0 mmol) **169** und 1.62 g (5.5 mmol) **38** erhielt man nach Chromatographie an 36 g Kieselgel (erst E/P = 1:1, dann E/P = 3:1) 1.79 g (90%) **170** als zähes, farbloses Öl.

 $[\alpha]^{20}_{D} = +151.9 \ (c = 1.45 \ CH_2Cl_2).$

IR (Film) : 1220 (N=S=O), 1040 cm⁻¹ (S=O).

60-MHz-¹H-NMR (CDCl₃) : $\delta = 2.33$ ("s", 11-H₃), 2.40 ("s", 6-H₃), 4.18 ("s", 12-H₂), 4.27 ("s", 1-H₂), 7.1 - 7.6 (m, Aryl-H), 7.80 (wie dt, 3-H₂).

75-MHz⁻¹³C-NMR (CDCl₃) : δ = 21.41 (C-6), 21.57 (C-11), 42.07 (C-12), 81.04 (C-1), 127.44, 127.71, 128.61 (Phenyl-C), 128.80 (C-3), 129.89 (C-9), 130.21 (C-4), 137.93 (C-2), 139.61 (C-7), 142.51 (C-10), 144.85 (C-5).

 $C_{22}H_{23}NO_2S_2(397.56)$

Q 4.4 (*S*,*RS*)-*N*,*N'*-Bis(2-propenyl)-bis(*p*-toluolsulfonimidoyl)methan (197 und *meso*-197)

Mit 0.40 g (1.91 mmol) **192** und 0.45 g (2.11 mmol) **195** erhielt man nach Chromatographie an 70 g Kieselgel (E/P = 1:1) 0.14 g (19%) **197** als Gemisch der beiden Diastereomeren (*meso*-**197** : **197** = 44 : 56 ; ¹H-NMR-spektroskopisch bestimmt). In Abweichung von der allg. Arbeitsvorschrift rührte man nach Elektrophilzugabe 4 h bei -20 °C.

 $R_F = 0.66 (EE/P = 3:1).$

 $[\alpha]_{D}^{20} = +16.1 \text{ (c} = 4.52 \text{ Aceton)}.$

IR (Film) : 1220 (N=S=O).

300-MHz-¹H-NMR (C_6D_6) : $\delta = 1.876$ ("s", 6-H₆, meso), 1.891 ("s", 6-H₆), 3.75 (m, 7-H₄), 4.61, 4.89 (AB, 1-H₂, meso), 4.82 (s, 1-H₂), 5.10 (m, 9-H), 5.343 (ddt, 9'-H, meso), 5.400 (ddt, 9'-H), 5.937 (ddt, 8-H), 5.982 (ddt, 8-H, meso), 6.85 (m, 4-H₄), 7.90 (wie dt, 3-H₄).

 $J_{\rm AB}=14.7$ Hz, $J_{7,8}=4.9$ Hz (meso), $J_{7,8}=5.0$ Hz, $J_{8,9}=10.2$ Hz, $J_{8.9}=16.9$ Hz, $J_{7,9}=J_{7,9}=J_{9,9}=1.9$ Hz.

-211-

75-MHz-¹³C-NMR (C₆D₆) : δ = 21.12 (C-6), 45.97 (C-7), 46.03 (C-7, *meso*), 73.17 (C-1, *meso*), 73.70 (C-1), 114.01 (C-9, *meso*), 114.09 (C-9), 129.43, 129.72 (C-3 und C-4), 136.25 (C-2, *meso*), 136.60 (C-2), 138.20, 138.24 (C-8), 143.5 (C-5).

MS (CI, Isobutan) : $m/e = 403 (100\%, [M+1]^+)$.

 $C_{21}H_{26}N_2O_2S_2$ (402.58)

Ber. C 62.65 H 6.51 Gef. C 62.45 H 6.71

O 5 Synthese des 1.2-Bis(*p*-toluolsulfonimidovl)ethans (200)

O 5.1 Oxidative Kupplung von 201:

Q 5.1.1 Mit Kupfer-(I)-chlorid / Sauerstoff (S,S)-N,N'-Bis(tert-Butyloxycarbonyl)-1,2-bis(p-toluolsulfonimidoyl)ethan (203), (S)-N-(tert-Butyloxycarbonyl)-S-vinyl-S-(p-tolyl)sulfoximid (205) und (R)-p-Toluolsulfinsäure-N-(tert-butyloxycarbonyl)amid (204)

177 mg (1.1 mmol) Hexamethyldisilazan wurden in 2 mL THF bei -78 °C mit 0.56 mL (1.1 mmol) einer 1.97 M Lsg. von *n*-BuLi in Hexan versetzt. Anschließend injizierte man 269 mg (1.0 mmol) **201**, gelöst in 1.0 mL THF, rührte 30 min nach und fügte unter Feuchtigkeitsausschluß 198 mg (2.0 mmol) Kupfer(I)-chlorid hinzu. Nach weiteren 30 min saugte man das Schutzgas ab und ersetzte es durch Sauerstoff, wobei sich die Mischung aus 15 mL ges. Ammoniumchloridlsg., 2 mL konz. Ammoniak und 10 mL Ether, extrahierte die dunkelblaue wäßrige Phase dreimal mit jeweils 10 mL Ether, trocknete die farblose organische Phase über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte den Rückstand an 36 g Kieselgel (E/P = 1:1). Dabei erhielt man 51 mg (20%) **204**, 30 mg (12%) **205** und 90 mg einer 87 : 13 Mischung (¹H-NMR-spektroskopisch bestimmt) aus **203** und **201** jeweils als farbloses Öl.

 $R_F = 0.26$ (E/P= 1:1); $R_F = 0.62$ (EE/P=3:1).

 $[\alpha]_{D}^{20} = -102.8 \ (c = 1.10, \text{ Aceton}).$

IR (Film): 3170 (NH), 1728 (C=O), 1160 cm-1 (S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.496 (s, 8-H₉), 2.419 ("s", 6-H₃), 7.065 (br., N*H*), 7.33 (m, 4-H₂), 7.60 (wie dt, 3-H₂).

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.12 (C-6), 27.78 (C-8), 82.84 (C-7), 124.52 (C-3), 129.51 (C-4), 140.41 (C-2), 141.84 (C-5), 152.5 (C-1).

MS (CI, Isobutan) : m/e = 256 (4.7%, $[M+1]^+$), 200 (100%, M - *t*-Bu). C₁₂H₁₇NO₃S (255.39) Ber. C 56.63 H 6.87

 $R_F = 0.12 (E/P = 1:1)$

 $R_F = 0.53$ (EE/P = 3:1).

-210-

-213-

300-MHz-¹H-NMR (CDCl₃) : $\delta = 1.40$ (s, 10-H₉), 2.45 ("s", 7-H₃), 6.10 (dd, H_M), 6.24 (dd, H_X), 6.44 (dd, H_A), 7.37 (m, 5-H₂), 7,84 (wie dt, 4-H₂). $J_{AM} = 1.0$ Hz, $J_{AX} = 16.4$ Hz, $J_{MX} = 9.5$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.55 (C-7), 28.06 (C-10), 124.74 (C-2), 127,88 (C-4), 130.11 (C-5), 137.60 (C-3), 142.60 (C-1), 144.60 (C-6), 157.32 (C-8).

MS (CI, Isobutan) : $m/e = 282 (13.5\%, [M+1]^+)$.

 $[\alpha]_{D}^{20} = -39.4 (c = 1.14, Aceton).$

IR (KBr) : 1710, 1665 (C=O), 1235, 1160 cm-1 (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.335 (s, 8-H₁₈), 2.478 ("s", 6-H₆), 3.591, 3.711 (AA'BB', 1-H₄), 7.40 (m, 4-H₄), 7.75 (wie dt, 3-11₄). AA'BB' - System (LAOCOON III, RMS-Error = 0.112; s. a. Abb. 4, Abschnitt **F 4.1**):

Berechnet:	Input - Parameter:
$v_A = v_{A'} = 3.591 \text{ ppm}$	3.590 ppm
$\nu_B=\nu_{B'}=3.711~ppm$	3.711 ppm
$J_{\rm AA} = 4.2 \; {\rm Hz}$	3.4 Hz
$J_{\rm AB} = J_{\rm A'B'} = -13.6 \ {\rm Hz}$	-12.0 Hz
$J_{AB'} = J_{A'B} = 12.8 \text{ Hz}$	11.2 Hz
$J_{\rm BB'} = 3.8 \; {\rm Hz}$	3.1 Hz

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.51 (C-6), 27.82 (C-8), 49.89 (C-1), 80.74 (C-9), 127.88 (C-4), 130.34 (C-3), 133.15 (C-2), 145.48 (C-5), 156.78 (C-7).

MS (CI, Isobutan) : $m/e = 537 (0.18\%, [M+1]^+)$.

MS (FAB, 3-Nitrobenzylalkohol) : m/e = 1073 (2.3%, [2M+1]⁺), 537 (20%, [M+1]⁺).

 $C_{26}H_{36}N_2O_6S_2(536.72)$

Ber. C 58.17 H 6.89 Gef. C 58.18 H 6.76

Q 5.1.2 Mit Kupfer(II)-chlorid:

(S,S)-N,N'-Bis(tert-Butyloxycarbonyl)-1,2-bis(p-toluolsul fonimidoyl)ethan (203) und (S^*) -N-(tert-Butyloxycarbonyl-S-chlormethyl-S-(p-tolyl)-sulfoximid (208)

In eine aus 0.69 g (4.3 mmol) Hexamethyldisilazan und 2.44 mL (4.30 mmol) *n*-BuLi (1.76 M, Hexan) bei -78 °C in 8 mL THF bereitete Lösung von LHMDS tropfte man 1.05 g (3.90 mmol) **201** (gelöst in 2 mL THF) und rührte 30 min bei -78 °C nach. Während dieser Zeit suspendierte man bei Raumtemp. 1.05 g (7,81 mmol, 2.0 Äquiv.) wasserfreies Kupfer(II)-chlorid in 25 mL THF, kühlte dann auf -78 °C ab und pumpte die Lösung von **223** über einen Polyethylenschlauch in die Suspension.

Die vormals erdig-braune Mischung nahm daraufhin unter Auflösung des größten Teils

-212-

des Chlorides eine dunkelgrüne Farbe an. Nach 10 min entfernte man das Kühlbad, rührte 2 h bei Raumtemp. nach, goß die Reaktionsmischung auf 30 mL eiskalte, ges. Ammoniumchloridlsg. und 5 mL konz. Ammoniak, extrahierte dreimal mit jeweils 5 mL EE, trocknete über Magnesiumsulfat, chromatographierte rasch an 36 g Kieselgel (EE/P = 1:2) und erhielt 0.65 g (62%) **203** als farblosen, glasartigen Festkörper.

Mit 269 mg **201** (1.0 mmol) und 148 mg (1.1 mmol, 1.1 Äquiv.) Kupfer(II)-chlorid erhielt man nach rascher Chromatographie 219 mg (82%) **203**.

Mit 6.50 g (24.2 mmol) **201** und 3.57 g (26.6 mmol, 1.1 Äquiv.) Kupfer(II)-chlorid erhielt man nach Chromatographie an 140 g Kieselgel (EE/P = 1:1) neben 0.73 g (11%) **201** und 0.53 g (8%) **203** 0.27 g (3.8%) **208** als weißen Festkörper vom Schmp. 88 °C. Die verbliebenen 77% bestanden aus einer Mischung der Eliminationsprodukte **204** und **205** (vergl. Abschnitt **Q 5.1**).

Mit 1.98 g (7.3 mmol) **201** und 1.09 g (8.08 mmol) Kupfer(II)-chlorid erhielt man 1.96 g (99%) rohes **203** als weißen glasartigen Festkörper, der ohne weitere Reinigung weiter umgesetzt wurde.

 $R_F = 0.31 \ (E/P = 1:1).$

 $[\alpha]^{20} = +13.8 \ (c = 1.1, \text{ Aceton}).$

IR (KBr) : 1665 (C=O), 1245, 1170 cm⁻¹ (N=S-O).

300-MHz⁻¹H-NMR (CDCl₃) : δ = 1.456 (s, 9-H₉), 2.479 (t, 6-H₃), 4.809, 5.110 (AB, 1-H₂), 7.41 (m, 4-H₂), 7.91 (wie dt, 3-H₂). J_{46} = 0.7 Hz, J_{AB} = 12.0 Hz. 75-MHz-¹³C-NMR (CDCl₃): δ = 21.65 (C-6), 28.01 (C-9), 58.67 (C-1), 81.11 (C-8), 129.25 (C-3), 130.01 (C-4), 130.58 (C-2), 145.85 (C-5), 157.10 (C-7).

MS (CI, Isobutan) : $m/e = 304 (25.7\%, [M+1]^+)$.

MS (FAB, 3-Nitrobenzylalkohol) : m/e = 607 (4%, [2M+1]⁺), 304 (34%, [M+1]⁺).

C₁₃H₁₈ClNO₃S (303.81)

Ber. C 51.39 H 5.97 Gef. C 51.24 H 6.06

Q 5.2 Abspaltung der *tert*-Butyloxycarbonylgruppe

- Q 5.2.1 mit Trifluoressigsäure (TFA)
- Q 5.2.1.1 Deblockierung von 201: (*R*)-Methyl-(*p*-tolyl)sulfoximid (168)

Zu 1 mL TFA gab man bei Raumtemp. portionsweise 135 mg (0.5 mmol) **201**, rührte bis zum Abklingen der Kohlendioxidentwicklung ca. 30 min nach, goß die Reaktionsmischung auf 5 mL Wasser und 5 mL Ether, versetzte die Mischung bis zum Ausbleiben der Gasentwicklung mit festem Kaliumcarbonat, extrahierte die wäßrige Phase dreimal mit jeweils 5 mL Ether, trocknete über Magnesiumsulfat und erhielt nach chromatographischer Reinigung an 8 g Kieselgel (EE/P = 3:1) 65 mg (77%) **168** mit $[\alpha]^{20}_{D}$ = -36.0 (c = 1.07, Aceton; Lit.⁵⁸: -31.9 (c = 3.0, Aceton).

Q 5.2.1.2 Deblockierung von 203: (*S*,*S*)-1,2-Bis(*p*-toluolsulfonimidoyl)ethan (200) und (*R*)-*S*-(*p*-tolyl)-*S*-vinyl-sulfoximid (215)

Zu 2 mL auf 0 °C gekühlter TFA gab man portionsweise 1.35 g (2.52 mmol) reines **203**, rührte 30 min nach, goß die Mischung auf 20 mL, eiskalte ges. Kaliumcarbonatlsg. und 20 mL Dichlormethan, trocknete über Magnesiumsulfat, entfernte das Solvens i.

Vak. und erhielt nach Kristallisation des erhaltenen Rückstandes aus Ethanol 624 mg (74%) eines mit ca. 20% der monodeblockierten Form **214** verunreinigten Produktes. Erneute Kristallisation lieferte 290 mg (34%) reines **200.** Aus der Mutterlauge ließen sich säulenchromatographisch (36 g Kieselgel, EE/P = 1:1) 49 mg (10%) **215** (farbl. Öl), 18 mg (2.5%) **205** (farbl. Öl) und 77 mg (7%) **214** (farbl. Öl) isolieren.

 $R_F = 0.13$ (EE/P = 3:1), Schmp. 149 - 150 °C (EtOH / Ether).

 $[\alpha]^{20}_{D} = -7.9$ (578nm, -7.7; 546nm, -7.9; 436nm, -4.61; 365nm, +17.1, c = 0.91, CH₂Cl₂).

IR (KBr) : 3320, 3280, 3260 (NH), 1225, 1120, 1110 (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 2.453 (t, 6-H₆), 2.743 (br., 2 N*H*), 3.395, 3.472 (AA'BB', 1-H₄), 7.32 (m, 4-H₄), 7.78 (wie dt, 3-H₄).

$J_{4,6} = 0.7$ Hz.

AA'BB' - System (LAOCOON III, RMS-Error = 0.584, s. a. Abb. 5, Kapitel F 4.3.2):

Berechnet:	Input - Parameter:
$v_A = v_{A'} = 3.395 \text{ ppm}$	3.395 ppm
$v_B = v_{B'} = 3.472 \ ppm$	3.473 ppm
$J_{AA'} = 1.8 \text{ Hz}$	3.10 Hz
$J_{\rm AB} = J_{\rm A'B'} = -13.4 \; {\rm Hz}$	-12.0 Hz
$J_{\rm AB'} = J_{\rm A'B} = 12.3 {\rm Hz}$	11.2 Hz
$J_{\mathrm{BB'}} = 1.8~\mathrm{Hz}$	3.10 Hz

137.83 (C-2), 144.42 (C-5).

MS (CI, Isobutan) : $m/e = 338 (4.1\%, [M+2]^+)$.

MS (FAB, 3-Nitrobenzylalkohol) : $m/e = 673 (2.5\%, [2M+1]^+), 337 (40\%, [M+1]^+).$

 $C_{16}H_{20}N_2O_2S_2$ (336.48)

Ber. C 57.11 H 5.99 Gef. C 57.06 H 5.86

 $R_F = 0.31$ (EE/P = 3:1), 0.17 (EE/P = 1:1).

IR (Film) : 3205, 3155 (NH), 1235, 1135, 1110 (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 2.433 (t, 7-H₃), 5.936 (dd, H_M), 6.374 (dd, H_A), 6.723 (dd, H_X), 7.32 (m, 5-H₂), 7.87 (wie dt, 4-H₂). $J_{AM} = 0.5$ Hz, $J_{AX} = 16.4$ Hz, $J_{MX} = 9.5$ Hz, $J_{5,7} = 0.7$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.49 (C-7), 125.76 (C-2), 128.14 (C-4), 129.77 (C-5), 138.87 (C-3), 140.91 (C-1), 143.82 (C-6).

MS (CI, Methan) : $m/e = 182 (100\%, [M+1]^+)$.

C₉H₁₁NOS (181.26)

Ber. 182.0639 Gef. 182.0638

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.43 (C-6), 51.96 (C-1), 128.22 (C-3), 129.91 (C-4),

 $R_F = 0.39 (EE/P = 3:1).$

60-MHz-¹H-NMR (CDCl₃) : δ = 1.35 (s, 8-H₉), 2.43 (s, 6-H₆), 2.8 (br., N*H*), 3.5 (m, 1-H₄), 7.1 - 7.4 (wie dd, 4-H₄), 7.5 - 7.8 (wie d, 3-H₄).

Q 5.2.2 Mit Aluminiumchlorid / Anisol⁹¹⁾

Q 5.2.2.1 Deblockierung von 211: (*R*)-Isopropyl-(*p*-tolyl)sulfoximid (210)

Eine Lösung von 149 mg (0.50 mmol) **211** und 324 mg (3.0 mmol) Anisol in Dichlormethan wurde auf 0 °C gekühlt und tropfenweise mit 200 mg (1.5 mmol) Aluminiumchlorid in 3 mL Nitromethan versetzt. Nach 30 min bei 0 °C injizierte man 1.0 mL Wasser und goß die Mischung auf 5 mL Wasser und 5 mL Ether. Nachdem man die untere Phase mit Kaliumcarbonat gesättigt hatte, extrahierte man dreimal mit jeweils 10 mL Ether, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte an 15 g Kieselgel (EE). Man erhielt 93 mg (94%) **210** mit $[\alpha]^{20}_{D} = -17.2$ (c = 1.24, Aceton; Lit.¹⁹: -17.1 c = 1.0, Aceton).

Q 5.2.2.2 Deblockierung von 203: (*S*,*S*)-1,2-Bis(*p*-toluolsulfonimidoyl)ethan (200) und (*S*^{*})-*S*-Chlormethyl-*S*-(*p*-toly)sulfoximid (220)

400 mg (0.75 mmol) reines **203** wurden mit 486 mg (4.5 mmol, 3.0 Äquiv.) Anisol in 8 mL Dichlormethan bei 0 °C vorgelegt und tropfenweise mit 300 mg (2.25 mmol, 1.5 Äquiv.) Aluminiumchlorid, gelöst in 8 ml Nitromethan, versetzt. Man rührte 70 min nach, fügte dann 15 mL Wasser und 20 mL Ether hinzu, sättigte die wäßrige Phase mit Kaliumcarbonat, extrahierte dreimal mit jeweils 20 mL Ether, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte rasch an 20 g Kieselgel (erst EE, dann Methanol). Man erhielt 176 mg (70%) **200**.

Alternatives Verfahren:

1.97 g (max. 3.69 mmol) rohes **203** (aus 1.97 g, 7.3 mmol, **201** hergestellt) und 4.78 g (44.26 mmol, 6.0 Äquiv.) Anisol in 50 mL Dichlormethan wurden bei 0 °C mit einer auf 0 °C gekühlten Lsg. von 2.95 g (22.13 mmol, 3.0 Äquiv.) Aluminiumchlorid in 50 mL Nitromethan versetzt. Man rührte 30 min nach, fügte dann 75 mL Wasser hinzu, extrahierte zweimal mit jeweils 50 mL Dichlormethan und einmal mit 20 mL Ether, wusch mit 20 mL ges. Kochsalzlsg. und trocknete über Magnesiumsulfat.

Nach Entfernung des Solvens i. Vak. brachte man den Rückstand durch Zugabe von 20 mL Ether zur Kristallisation, zog das Solvens erneut i. Vak. ab und suspendierte den Rückstand in 40 mL Ether. Man rührte 30 min bei Raumtemp. und erhielt nach Filtration 622 mg (50%, bez. auf **201**) **200** als weißen Festkörper vom Schmp. 150 °C (Ether).

Aus dem Filtrat ließen sich säulenchromatographisch (36 g Kieselgel, EE/P = 1:1) 74 mg (10%) **220** als weißer Festkörper vom Schmp. 110 °C isolieren (EE/P).

-220-

$R_F = 0.58 \ (EE/P = 3:1).$

IR (KBr) : 3240 (NH), 1220, 1150 cm-¹ (N=S=O)).

300-MHz-¹H-NMR (CDCl₃) : δ = 2.467 (t, 6-H₃), 3.08 (br., N*H*), 4.531, 4.573 (AB, 1-H₂), 7.40 (m, 4-H₂), 7.93 (wie dt, 3-H₂).

 $J_{4,6} = 0.8$ Hz, $J_{AB} = 11.9$ Hz [v_A (korr.) = 4.544, v_B (korr.) = 4.560].

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.58 (C-6), 61.35 (C-1), 129.33 (C-3), 129.80 (C-4), 134.62 (C-2), 145.02 (C-5).

MS (CI, Isobutan) : $m/e = 204 (100\%, [M+1]^+)$.

MS (FAB, 3-Nitrobenzylalkohol) : m/e = 407 (2.9%, [2M+1]⁺), 204 (100%, [M+1]⁺).

C₈H₁₀ClNOS (203.69)

Ber. C 47.17 H 4.95 Gef. C 47.15 H 4.99

Q 5.2.3 Mit Titantetrachlorid: (*R*)-Isopropyl-(*p*-tolyl)sulfoximid (210)

149 mg (0.50 mmol) **211** in 2 mL Dichlormethan wurden bei Raumtemp. mit 119 mg (0.63 mmol) Titantetrachlorid versetzt. Man rührte 30 min nach, goß die Reaktionsmischung dann auf 10 mL ges. Kaliumcarbonatlsg. und 10 mL Ether, extrahierte die wäßrige Phase zweimal mit jeweils 10 mL Ether, trocknete die vereinigten Extrakte über Magnesiumsulfat und erhielt nach Chromatographie an 10 g Kieselgel (EE) 90 mg (91%) **210** mit $[\alpha]^{20}_{D}$ = -17.0 (c = 1.10, Aceton; Lit.⁵⁸): -17.1 c = 1.00 Aceton).

Q 6 Synthese des tridentalen Liganden 238

Q 6.1 Umsetzung von 201 mit Ethylformiat : (*S_s*,2*RS*)-1-[N-(*tert*-Butyloxycarbonyl)*p*-toluolsulfonimidoyl]-3,3-dimethylbutan-2-ol (225)

Zu 269 mg (1.0 mmol) **201** in 2 mL THF tropfte man bei -78 °C 0.86 mL (1.1 mmol) einer 1.28 M Lösung von *tert*-Butylmagnesiumbromid in Ether. Man rührte 30 min bei -22 °C nach, kühlte erneut auf -78 °C , injizierte 74 mg (1.0 mmol) Ethylformiat und entfernte das Kühlbad. Nach 17 h arbeitete man mit 2 mL ges. Ammoniumchloridlsg. auf, extrahierte dreimal mit jeweils 10 mL Ether, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte den Rückstand an 36 g Kieselgel (EE/P = 1:1). Man erhielt 76 mg (21%) **225AB** als Diastereomerengemisch (37 : 63; ¹H-NMR-spektroskopisch bestimmt).

 $R_F = 0.17 (E/P = 1:1), R_F = 0.22 (E/P = 1:1).$

IR (Film): 3480, 3370 (OH), 1675 (C=O), 1220, 1110 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 0.821, 0.854 (je s, 11-H₉), 1.342, 1.359 (je s, 8-H₉), 2.46 (s, 6-H₃), 3.1 - 3.95 (m, 1-H₂, 10-H und O*H*), 7.41 (m, 4-H₂), 7,85 (m, 3-H₂).

MS (CI, Isobutan) : $m/e = 356 (22.8\%, [M+1]^+)$.

C18H29NO4S (355.50)

Ber. C 60.82 H 8.22 Gef. C 60.89 H 8.19

-223-

-222-

Q 6.2 Synthese der α-Sulfonimidoylacetate

Q 6.2.1 (S)-[N-(tert-Butyloxycarbonyl)-p-toluolsulfonimidoyl]essigsäuremethylester (226)

In eine auf -78 °C gekühlte Lsg. von 1.34 mmol LHDMS (bereitet aus 215 mg, 1.34 mmol, Hexamethyldisilazan und 0.67 mL, 1.34 mmol, einer 2.01 M Lsg. von *n*-BuLi in Hexan) in 2 mL THF tropfte man 320 mg (1.2 mmol) **201**, gelöst in 2 mL THF, rührte 30 min nach und injizierte 162 mg (1.80 mmol) Dimethylcarbonat.

Nach 2 h unterbrach man die Reaktion durch Injektion von 0.30 mL 50% Essigsäure, entfernte das Kühlbad, goß die Reaktionsmischung auf 10 mL ges. Kochsalzlsg. und 10 mL Ether, extrahierte zweimal mit jeweils 10 mL Ether, entsäuerte mit ges. Natriumhydrogencarbonatlsg. (10 mL), trocknete über Magnesiumsulfat und erhielt nach Chromatographie an 36 g Kieselgel (EE/P = 1:2) 165 mg (42%) **226** als farbloses Öl.

 $[\alpha]^{20} = +14.1$ (c = 1.08, Aceton).

IR (Film) : 1740 (OC=O), 1675 (NC=O), 1260, 1160 cm-¹ (N=S=O).

 $J_{AB} = 14$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.60 (C-7), 28.04 (C-9), 52.87 (OCH₃), 59.42 (C-2),

80.72 (C-10), 128.55 (C-4), 129.88 (C-5), 133.56 (C-3), 145.36 (C-6), 157.33 (C-8), 162.47 (C-1).

C₁₅H₂₁NO₅S (327.40)

Ber. C 55.03 H 6.47 Gef. C 55.13 H 6.47

Q 6.2.2 (S)-2-[N-(tert-butyloxycarbonyl)-p-toluolsulfonimidoyl]2-methylpropansäuremethylester (227)

In eine auf -78 °C gekühlte Lsg. von 3.30 g (11.1 mmol) **211** in 17 mL THF tropfte man 7.0 mL (12.24 mmol) einer 1.75 M Lsg. von *n*-BuLi in Hexan, rührte 20 min nach und injizierte 1.10 g (12.24 mmol) Dimethylcarbonat in 2 mL THF. Nach weiteren 30 min Rühren bei -78 °C entfernte man das Kühlbad, rührte 2 h bei Raumtemp. und arbeitete dann mit 20 mL ges. Ammoniumchloridlsg. auf. Nach dreimaliger Extraktion mit jeweils 15 mL Ether trocknete man die vereinigten Extrakte über Magnesiumsulfat und erhielt nach Entfernung des Solvens i. Vak. 3.92 g (99%) dünnschichtchromatographisch einheitliches **227**, welches nach ¹H-NMR-spektroskopischer Analyse weniger als 5% Verunreinigungen enthielt und ohne weitere Reinigung eingesetzt werden konnte. Die Analysenprobe wurde durch Chromatographie an Kieselgel (E/P = 1:1) erhalten.

 $R_F = 0.58$ (EE/P = 1:1); 0.15 (E/P = 1:1).

-225-

Chirale Liganden

-224-

IR (Film) : 1740 (OC=O), 1675 (NC=O), 1230, 1150 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.272 (s, 11-H₉), 1.578 (s, 9-H₃), 1.717 (s, 8-H₃), 2.466 (t, 7-H₃), 3.718 (s, OCH₃), 7.36 (m, 5-H₂), 7.71 (wie dt, 4-H₂). J_{57} = 0.8 Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 20.17 (C-8), 20.24 (C-9), 21.43 (C-7), 27.74 (C-11), 52.88 (OCH₃), 70.08 (C-2), 79.94 (C-12), 129.23 (C-4), 130.14 (C-5), 131.67 (C-3), 144.72 (C-6), 156.84 (C-10), 168.27 (C-1).

C17H25NO5S (355.46)

Ber. C 57.44 H 7.09 Gef. C 57.31 H 7.16

Q 6.3 Reduktion des Esters 227 : (S)-2-[N-(tert-Butyloxycarbonyl)-p-toluolsulfonimidoyl)]-2-methylpropanal (236)

Eine Lösung von 3.92 g (11.05 mmol) **227** (roh, aus 3.30 g (11.12 mmol) **211** synthetisiert) in 15 mL Ether wurde auf -78 °C abgekühlt und tropfenweise mit 16.6 mL (16.6 mmol) einer 1M Lsg. von DIBAH in Hexan versetzt.

Man rührte 5.5 h bei -78 °C nach, injizierte dann 8.3 mL Wasser, entfernte das Kühlbad und rührte 1 h bei Raumtemp.. Der gelartige Hydroxidniederschlag wurde nach Dekantieren der organischen Phase dreimal mit jeweils 50 mL Ether extrahiert, die Extrakte über Magnesiumsulfat getrocknet und dann das Solvens i. Vak. entfernt.

Nach Säulenchromatographie an 70 g Kieselgel (E/P = 1:2) erhielt man 1.91 g (53%, bez. auf **211**) **236** als weißen Festkörper vom Schmp. 96 °C (E/P).

 $R_F = 0.21 (E/P = 1:1).$

 $[\alpha]_{D}^{20} = -27.2 \ (c = 1.13, CH_2Cl_2).$

IR (KBr) : 1728, 1708 (C=O), 1690, 1675 (NC=O), 1280 - 1225, 1170 - 1110 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.286 (s, 11-H₉), 1.518 (s, 8-H₃), 1.650 (s, 9-H₃), 2.464 (t, 7-H₃), 7.38 (m, 5-H₂), 7.62 (wie dt, 4-H₂). J_{5.7} = 0.7 Hz

75-MHz-¹³C-NMR (CDCl₃) : δ = 16.18 (C-8), 16.61 (C-9), 21.27 (C-7), 27.56 (C-11), 69.21 (C-2), 80.15 (C-12), 129.18 (C-4), 129.69 (C-5), 130.85 (C-3), 145.09 (C-6), 156.60 (C-10), 194.44 (C-1).

C16H23NO4S (325.43)

Ber. C 59.05 H 7.12 Gef. C 58.96 H 7.13

Q 6.3.1 "Eintopfvariante" zu 236: (S)-2-[N-(tert-Butyloxycarbonyl)-p-toluolsulfonimidoyl)]-2-methylpropanal (236) und (S)-2-[N-(tert-Butyloxycarbonyl)-p-toluolsulfonimidoyl)]-2-methylpropan-1-ol (237)

594 mg (2.0 mmol) **211** wurden in 5 mL Ether und 1 mL THF bei -78 °C mit 1.3 mL (2.2 mmol) 1.75 M *n*-BuLi in Hexan 35 min deprotoniert. Anschließend injizierte man 198 mg (2.2 mmol) Dimethylcarbonat, entfernte das Kühlbad, rührte 1 h bei Raumtemp. nach, kühlte erneut auf -78 °C und tropfte 3.0 mL (3.0 mmol) einer 1 M DIBAH - Lsg. in Hexan hinzu. Zur Aufarbeitung goß man die Reaktionsmischung auf 20 mL ges. Ammoniumchloridlsg., rührte 30 min, sättigte die wäßrige Phase mit Kaliumfluorid, extrahierte dreimal mit je 20 mL Ether, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und erhielt nach Chromatographie an 36 g Kieselgel (erst E/P = 1:2, dann E) 291 mg (45%) **236**, 109 mg (15%) mit Ausgangsmaterial verunreinigtes **227**, sowie 65 mg (7%) des Alkohols **237** als farbloses, zähes Öl.

IR (Film) : 3350 (OH), 1660 cm⁻¹ (N=C=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.282 (s, 11-H₉), 1.417 (s, 8-H₃), 1.517 (s, 9-H₃), 2.479 (t, 7-H₃), 3.656, 3.812 (AB, 1-H₂), 4.58 (br., O*H*). $J_{5,7}$ = 0.7 Hz, J_{AB} = 13.2 Hz. 75-MHz-¹³C-NMR (CDCl₃) : δ = 18.18 (C-8), 19.67 (C-9), 21.58 (C-7), 27.90 (C-11), 63.79 (C-1), 65.96 (C-2), 80.40 (C-12), 129.87 (C-4 und C-5), 130.64 (C-3), 145.03 (C-6), 156.97 (C-10).

-227-

 $C_{16}H_{25}NO_4S$ (327.45)

Q 6.4 Kupplung des Aldehyds 236 mit 211: (*S*,*S*)-2,4-Bis[*N*-(*tert*-butyloxycarbonyl)-*p*-toluolsulfonimidoyl]-2,4-dimethyl-pentan-3-ol (238)

In eine Lösung von 1.73 g (5.82 mmol) **211** in 10 mL THF tropfte man bei -78 °C 3.74 mL (6.4 mmol) 1.71 M *n*-BuLi in Hexan, rührte 30 min nach und injizierte 1.80 g (5.54 mmol) **236**, gelöst in 2 mL THF. Nach 4 h unterbrach man die Reaktion durch Zugabe von 10 mL ges. Ammoniumchloridlsg., entfernte das Kühlbad, goß auf eine Mischung aus 20 mL Ether und 20 mL ges. Ammoniumchloridlsg., extrahierte zweimal mit jeweils 10 mL Ether, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte an 70 g Kieselgel (E/P = 3:1). Man erhielt 2.92 g (84%) **238** als weißen, glasartigen Festkörper.

 $[\alpha]_{D}^{20} = -180.1 \text{ (c} = 0.94, \text{ MeOH)}.$

-228-

IR (KBr) : 3350 (OH), 1690 (C=O), 1270, 1250, 1220, 1150, 1100 cm⁻¹ (N=S=O).

300-MHz⁻¹H-NMR (CDCl₃) : δ = 1.229 (s, 12-H₉), 1.283 (s, 12'-H₉), 1.389 (s, 1-H₃), 1.429 (s, 1'-H₃), 1.508 (s, 5-H₃), 1.561 (s, 5'-H₃), 2.455 ("s", 10-H₃), 2.486 ("s", 10'-H₃), 4.901 (d, 3-H), 5.889 (d, OH), 7.30, 7.41 (m, 8-H₂ und 8'-H₂), 7.75 (wie dt, 7-H₂ und 7'-H₂).

 $J_{3,OH} = 3.8$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 17.39 (C-5), 17.59 (C-5'), 20.48 (C-10'), 21.53 (C-1), 21.61 (C-1'), 22.29 (C-10), 27.83 (C-12), 27.94 (C-12'), 71.02 (C-4), 73.99 (C-3), 74.45 (C-2), 79.68 (C-13), 80.48 (C-13'), 128.84 (C-7'), 129.84 (C-7), 130.23 (C-8'), 131.00 (C-8), 131.35 (C-6'), 133.89 (C-6), 143.88 (C-9'), 145.02 (C-9), 156.21 (C-11'), 157.26 (C-11).

$C_{31}H_{46}N_2O_7S_2$ (622.85)

Ber. C 59.78 H 7.44 Gef. C 59.81 H 7.58

Q 7 Darstellung der β-Hydroxysulfoximide

Q 7.1 (S)-Methyl-(p-tolyl)-N-trimethyIsily1sulfoximid (213)

In eine auf 70 °C erwärmte Lösung von 7.42 g (max. 43.9 mmol) rohem **168** in 5.5 mL Acetonitril tropfte man 7.96 g (54.9 mmol) Diethylaminotrimethylsilan, rührte 15 min bei dieser Temp. nach, entfernte dann die flüchtigen Bestandteile i. Vak. und destillierte den Rückstand. Man erhielt 9.34 g (88%, bez. auf **142**) **213** als farbloses Öl.

Sdp. (0.008 Torr) : 98 °C.

 $[\alpha]^{20}_{D} = -77.3 \ (c = 4.2 \ CH_2Cl_2).$

IR (Film) : 1250, 1150 cm⁻¹ (N=S=O).

60-MHz-¹H-NMR (CDCl₃) : $\delta = 0.15$ (s, Si(CH₃)₃), 2.4 (s, 6-H₃), 2.95 (s, 1-H₃), 7.05 - 7.90 (wie AB, 4-H₂ und 3-H₂).

75-MHz-¹³C-NMR (CDCl₃) : δ = 2.23 (Si(CH₃)₃), 21.19 (C-6), 49.24 (C-1), 126.77 (C-3), 129.23 (C-4), 142.00 (C-2), 142.54 (C-5).

MS (CI, Methan) : $m/e = 242 (30.4\%, [M+1]^+)$.

C11H19NOSSi (241.40)

Ber. 242.1023 Gef. 242.1029

Q 7.2 Synthese von (S)-S-[2-Methyl-(N-trimethylsilyl)-1-(trimethylsilyloxymethyl)propyl]-S-(p-tolyl)sulfoximid (246) und (S)-2-Methyl-1-(p-toluolsulfonimidoyl)-2-propanol (249)

In eine aus 25.7 mL (42.0 mmol) einer 1.64 M Lsg. von *n*-BuLi in Hexan und 4.24 g (42.0 mmol) Diisopropylamin bei -78 °C in 30 mL THF bereiteten LDA - Lsg. tropfte man 9.20 g (38.2 mmol) **213** gelöst in 8 mL THF. Man rührte 30 min nach, injizierte 3.32 g (57.3 mmol) Aceton, rührte weitere 2 h bei -78 °C und 16 h bei Raumtemp. und

-231-

Chirale Liganden

goß dann auf 50 mL Eiswasser und 50 mL Ether. Man extrahierte die wäßrige Phase zweimal mit jeweils 20 mL Ether, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und erhielt 11.3 g (99%) des *N*-Silyl-[β -hydroxysulfoximides **239**, welches ohne weitere Reinigung in 50 mL Dichlormethan gelöst wurde und bei 0 °C zunächst mit 5.52 g (75.7 mmol) Ethyldimethylamin und dann tropfenweise mit 8.21 g (75.7 mmol) Chlortrimethylsilan versetzt wurde. Nach 5 h rühren bei 0 °C entfernte man das Eisbad und rührte 16 h bei Raumtemp. nach. Zur Aufarbeitung zog man die flüchtigen Bestandteile i. Vak. ab, nahm den Rückstand in 50 mL Ether auf, rührte 15 min, filtrierte und entfernte das Solvens erneut.

Variante A: Man chromatographierte den Rückstand rasch über 140 g Kieselgel (E/P = 1:3) und erhielt 8.85 g (62%, bez. auf **213**) **246** als farbloses Öl.

Variante B: Man destillierte den Rückstand i. Vak. am Kugelrohr (140 °C ; 0.001 Torr) und erhielt 11.42 g (80%, bez. auf **213**) **246** als leicht verunreinigtes, gelbliches Öl.

 $R_F = 0.11 (E/P = 1:1).$

 $[\alpha]_{D}^{20} = -63.2 \ (c = 1.71, CH_2Cl_2).$

IR (Film) : 1250, 1150 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = -0.030 (s, NSi(CH₃)₃), 0.045 (s, OSi(CH₃)₃), 1.420 (s, 1-H₃), 1.450 (s, 1'-H₃), 2.41 (t, 8-H₃), 3.218, 3.274 (AB, 3-H₂), 7.28 (m, 6-H₂), 7.75 (wie dt, 5-H₂).

 $J_{6,8} = 0.7$ Hz, $J_{AB} = 14.1$ Hz (korr.: $v_A = 3.230$, $v_B = 3.262$).

75-MHz-¹³C-NMR (CDCl₃) : δ = 2.44 (s, NSi(CH₃)₃ und OSi(CH₃)₃), 21.37 (C-8), 29.65 (C-1), 30.39 (C-l), 69.44 (C-2), 71.68 (C-3), 127.55 (C-5), 129.17 (C-6), 142.26 (C-4), 143.27 (C-7).

MS (CI, Methan) : $m/e = 372 (29.5\%, [M+1]^+)$.

C₁₇H₃₃NO₂SSi₂ (371.64)

Ber. 372.1849 Gef. 372.1866

Zur Desilylierung des monosilylierten Zwischenproduktes wurden 11.3 g (37.8 mmol) **239** mit 1.1 Äquiv. Eisessig (2.50 g, 41.6 mmol) in 50 mL Ether unter DC-Kontrolle bei Raumtemp. bis zum Verbrauch des Substrates gerührt. Anschließend entsäuerte man mit ges. Natriumhydrogencarbonatlsg. (3 x 20 mL), trocknete die organische Phase über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte den Rückstand an 140 g Kieselgel (E/P = 1:1). Man erhielt 6.24 g (72%) **249** als weißen Festkörper vom Schmp. 77 °C (E/P).

 $R_F = 0.04$ (E/P = 1:1), 0.24 (EE/P = 1:1).

 $[\alpha]^{20}_{D} = -13.6 (c = 1.0, MeOH).$

IR (KBr) = 3360 (OH), 3270 (NH), 1215, 1090 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.258 (s, 1-H₃), 1.590 (s, 1'-H₃), 2.449 (t, 8-H₃), 2.96 (br., N*H*), 3.119 (dd, H_A), 3.335 (dq, H_B), 5.97 (br., O*H*). J_{AB} = 13.9 Hz, $J_{A,1}$ = 0.6 Hz, $J_{B,OH}$ = 3.0 Hz.

-233-

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.40 (C-8), 28.79 (c-1), 30.68 (C-1'), 66.06 (C-2), 69.97 (C-3), 127.71 (C-5), 129.76 (C-6), 141.32 (C-4), 143.97 (C-7).

C₁₁H₁₇NO₂S (227.32)

Ber. C 58.12 H 7.54 Gef. C 57.96 H 7.43

Q 7.3 Darstellung von (S)-S-[1,1,2-Trimethyl-(N-trimethylsilyl)-1-(trimethylsilyl) oxymethyl)propyl]-S-(p-tolyl)sulfoximid (247)

Zu einer Lsg. von 3.85 g (13.0 mmol) **211** in 20 mL THF tropfte man 8.15 mL (14.3 mmol) einer 1.75 M Lsg. von *n*-BuLi in Hexan. Nach 30 min injizierte man 1.13 g (19.4 mmol) Aceton, rührte zunächst 75 min bei -78 °C, dann 2 h bei Raumtemp. Zur Aufarbeitung goß man die Reaktionsmischung auf 20 mL ges. Ammoniumchloridlsg. und 20 mL Ether, extrahierte zweimal mit je 20 mL Ether, trocknete über Magnesiumsulfat und entfernte das Solvens i. Vak.. Den Rückstand löste man in 10 mL Dichlormethan, versetzte bei 0 °C zunächst mit 1.9 g (26.0 mmol) Ethyldimethylamin, dann tropfenweise mit 2.11 g (19.5 mmol) Chlortrimethylsilan, entfernte das Kühlbad und rührte 16 h bei Raumtemp. nach. Anschließend arbeitete man wie oben beschrieben wäßrig auf (statt ges. Ammoniumchloridlsg. verwandte man 20 mL Wasser), chromatographierte an 135 g Kieselgel (erst E/P = 2:3, dann E) und erhielt 1.52 g (27%) **247** als weißen Festkörper vom Schmp. 110 °C (E) und 2.14 g (56%) des Ausgangsmaterials **211**.

 $[\alpha]_{D}^{20} = -78.8 \ (c = 1.3, \text{ Aceton}).$

IR (KBr) : 1690 (NC=O), 1210, 1130 cm -¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : $\delta = 0.007$ (s, OSi(CH₃)₃), 1.179 (s, 11-H₉), 1.316 (s, 1-H₃), , 1.434 (s, 1'-H₃), 1.569 (s, 4-H₃), 1.614 (s, 4'-H₃), 2.422 ("s", 9-H₃), 7.3, 7.7 (wie AB, 7-H₂ und 6-H₂).

75-MHz-¹³C-NMR (CDCl₃) : δ = 2.37 (OSi(CH₃)₃), 19.27 (C-4), 20.27 (C-4'), 21.43 (C-9), 27.82 (C-1), 27.90 (C-11), 28.58 (C-1'), 72.42 (C-2), 76.60 (C-3), 79.39 (C-12), 129.25 (C-6), 130.16 (C-7), 135,06 (C-5), 143.58 (C-8), 157.22 (C-10).

C21H37NO4SSi (427.68)

Ber. C 58.98 H 8.72 Gef. C 59.14 H 8.68

-235-

Titanreagenzien

R Synthese und Test der Titanreagenzien

R 1 Umsetzungen der chiralen Liganden mit Titantetrachlorid

R 1.1 mit 247: Titanreagenz 265

428 mg (1.0 mmol) **247** in 5 mL Dichlormethan wurden bei Raumtemp. tropfenweise mit 1.0 mL (1.0 mmol) einer 1M Lsg. von Titantetrachlorid in Dichlormethan versetzt. Dabei beobachtete man eine heftige Kohlendioxidentwicklung. Man rührte 100 min nach und zog dann die flüchtigen Bestandteile bei 0.001 Torr ab. Den so erhaltenen, gelben Festkörper nahm man in 2 mL THF auf und setzte die Lösung zur Transmetallierung ein.

265:

60-MHz-¹H-NMR (CDCl₃) : δ = 1.8-2.6 (m, S-C(CH₃)₂C(CH₃)₂O), 2.8-3.0 (m, Aryl-CH₃), 7.5-8.5 (m, Aryl-H).

R 1.2 mit 203: Titanreagenz 267

Mit 618 mg (1.15 mmol) **203** erhielt man gemäß der obigen Vorschrift (10 min Rühren bei Raumtemp., dann 2 h bei 40 °C) 586 mg eines zitronengelben Festkörpers mit $[\alpha]^{20}_{D} = -113.0$ (c = 1.02, CH₂Cl₂). Die DC-Analyse des Hydrolysates zeigte die völlige Abwesenheit von **203** an. Stattdessen beobachtete man die deblockierte Form **200** und das Eliminierungsprodukt **215** (durch Vergleich mit authentischem Material ermittelt).

267:

60-MHz-¹H-NMR (CDCl₃) : δ = 2.3-3.0 (br., Aryl-CH₃), 3.3-5.0 (br., S-(CH₂)₂-S), 7.2-7.8

(br., m-H₂), 7.8-8.5 (br., o-H₂).

Abb.13: 250 MHz-¹H-NMR-Spektrum von 267.

In eine Suspension von 622 mg (1.85 mmol) **200** in 6 mL Acetonitril tropfte man bei Raumtemp. 806 mg (5.56 mmol) Diethylaminotrimethylsilan, wobei die Mischung nach 15 min völlig homogen wurde. Nach weiteren 30 min entfernte man alle flüchtigen Bestandteile i. Vak.. Die ¹H-NMR-spektroskopische Analyse des Rückstandes zeigte die quant. Umsetzung zum bissilylierten Sulfoximid **266** an, welches nach Zugabe von 2 mL Dichlormethan mit 1.85 mL (1.85 mmol) einer 1M Lsg. von Titantetrachlorid in Dichlormethan zur Reaktion gebracht wurde. Man rührte 75 min nach, entfernte erneut alle flüchtigen Bestandteile i. Vak. und erhielt einen gelben Festkörper, der in 3 mL THF gelöst zur Transmetallierung eingesetzt wurde.

266:

60-MHz-¹H-NMR (CDCl₃) : δ = 0.10 (s, 2 Si(CH₃)₃), 2.45 (s, 2 Aryl-CH₃), 3.2 (m, S-(CH₂)₂-S), 7.10-7.75 (wie AB, Aryl-H). J_{ortho} ≈ 8.5 Hz.

R 2 Umsetzung von 273 mit Dichlordiisopropoxytitan: Titanreagenz 274

416 mg (1.97 mmol) **272** wurden 16 h bei Raumtemp. mit 429 mg (2.96 mmol) Diethylaminotrimethylsilan in 1 mL Acetonitril silyliert. Anschließend entfernte man die flüchtigen Bestandteile i. Vak., nahm in 3 mL Dichlormethan auf und tropfte eine Lsg. von 467 mg (1.97 mmol) Dichlordiisopropoxytitan in 1 mL Dichlormethan hinzu. Man rührte 75 min bei Raumtemp. nach und destillierte bis fast zur Trockene, wobei man im Destillat ¹H-NMRspektroskopisch Chlortrimethylsilan nachweisen konnte. Nachdem im Feinvakuum alle flüchtigen Bestandteile entfernt waren, nahm man den Rückstand in 3 mL THF auf und setzte diese Lsg. zur Titanierung ein.

274:

60-MHz-¹H-NMR (CDCl₃) : $\delta = 1.7-1.8$ (d, 2 OCH(CH₃)₂), 1.9 (s, C(CH₃)₃), 2.8 (wie s, br., Aryl-CH₃), 5.4 (wie qq, 2 OCHCH₃), 7.7 (m, *m*-H₂), 8.3 (m, *o*-H₂).

R 3 Test der Titanreagenzien

Die Umsetzungen sowohl der achiralen bzw. racemischen, als auch der chiralen Titanierungsreagenzien erfolgte nach der in Kapitel **O 3** formulierten allg. Arbeitsvorschrift und unter den in Tabelle 4 angegebenen Reaktionsbedingungen. Die physikalischen Daten der dabei erhaltenen Produkte **59** und **68** befinden sich in den Abschnitten **O 2.1.2** und **O 3.1**. Die jeweils erzielten Ergebnisse sind ebenfalls der Tabelle zu entnehmen.

Asym. d^3 -Synthone

S Synthese der optisch aktiven Schwefel(IV)- bzw. Schwefel(VI)-Bausteine

S 1 (S)-O-Trimethylsilylvalinol-Hydrochlorid (334c•HCl) und (S)-O-Trimethylsilylvalinol (334c)

6.0 g (58.2 mmol) (*S*)-Valinol und 8.5 g (0.12 mol) Ethyldimethylamin wurden bei 0 °C in 40 mL Dichlormethan vorgelegt und tropfenweise mit 6.96 g (64.0 mmol) Chlortrimethylsilan versetzt. Man rührte zunächst 15 min bei Raumtemp. nach, entfernte dann die flüchtigen Bestandteile i. Vak, nahm den Rückstand in 20 mL EE auf, entfernte erneut das Solvens und Reste von Chlortrimethylsilan, nahm den Rückstand in 20 mL siedendem EE auf, filtrierte und kristallisierte zunächst bei Raumtemp. und dann aus Ether bei -18 °C. Man erhielt 8.8 g (71%) 334c•HCl als weißen Feststoff (Schmp. 139 °C).

Mit 10.3 g (0.10 mol) (*S*)-Valinol, 13.0 g (0.12 mol) Chlortrimethylsilan und 14.6 g (0.20 mol) Dimethylethylamin in 60 mL Dichlormethan wurden unter sonst gleichen Reaktionsbedingungen nach alkalischer Aufarbeitung (20proz. NaOH, 40 mL) und dreimaliger Extraktion der wäßrigen Phase mit jeweils 20 mL Dichlormethan 16.0 g (92%) der freien Base **334c** erhalten. Die Destillation i. Vak. ergab 13.3 g (76%) **334c** als farblose, übelriechende Flüssigkeit.

 $^{[\}alpha]_{20D} = +8.0 (c = 1.12, CH_2Cl_2).$

(wie qq, 3-H), 3.10 (dt, 2-H), 3.83 (wie d, 1-H₂), 8.3 (br., NH₃). J_{1,2} = 5.6 Hz, J_{3,4} = 7 Hz.

C8H22CINOSi (211.78).

334c:

 $[\alpha]^{20}_{D} = +39.1$ (c = 2.84, CH₂Cl₂); Sdp. 62 °C/12 Torr.

60-MHz-¹H-NMR (CDCl₃) : $\delta = 0.15$ (s, Si(CH₃)₃), 0.91 ("d", 4-H₃ und 4'-H₃), 1.51 (s, NH₂), 1.70 (qqd, 3-H), 2.60 (ddd, 2-H), 3.5 (AB von ABX, 1-H₂). $J_{AB} \approx 10$ Hz, $J_{AX} \approx 4$ Hz, $J_{BX} \approx 7$ Hz, $J_{2,3} \approx 6$ Hz, $J_{3,4} \approx 7$ Hz

-239-

C₈H₂₁NOSi (175.35) Ber. 176.1470

6.1470 Gef. 176.1472.

S 2 (*RS*₅,1*S*)-*N*-[2-methyl-1-(trimethylsilyloxymethyl)propyl]-*p*-toluolsulfinsäureamid (335cAB)

9.0 g (75.6 mmol) Thionylchlorid wurden auf 0 °C gekühlt und portionsweise mit 9.0 g (50.4 mmol) wasserfreiem Natrium-*p*-toluolsulfinat versetzt. Nach Zugabe von etwa 75% dieser Menge hielt man die Mischung durch Addition von 5 mL Benzol rührfähig. Anschließend entfernte man das Kühlbad, rührte 2 h bei Raumtemp. nach, entfernte das Solvens und überschüssiges Thionylchlorid i. Vak., nahm den Rückstand in 30 mL Benzol auf und wiederholte diese Prozedur drei weitere Male. Dann löste man den Rückstand in 30 mL Ether (das dabei ausfallende Natriumchlorid stört die weitere Umsetzung nicht und wurde nicht abfiltriert) und tropfte die Suspension in eine auf -40 °C gekühlte Lsg. von 8.0 g (37.8 mmol) **334c-HCl** und 6.68 g (91.6 mmol) Ethyldimethylamin (bei Verwendung der freien Base 334c ist die Aminmenge zu halbieren) in 25 mL Dichlormethan. Anschließend entfernte man das Kühlbad, rührte 6 h bei Raumtemp. nach, goß das Reaktionsgemisch auf 50 mL Eiswasser, extrahierte dreimal mit jeweils 30 mL Dichlormethan und trocknete die vereinigten organischen Extrakte

über Magnesiumsulfat. Nach Entfernung des Solvens i. Vak. erhielt man 11.8 g (99%) **335cAB** als gelbes Öl, welches ohne weitere Reinigung zur Chlorierung mit *tert*-Butylhypochlorit eingesetzt werden konnte.

Eine Chromatographie an 300 g Kieselgel (E/P = 1:3) führte zur teilweisen Zersetzung der Substanz; man erhielt 6.9 g (58%) **335cAB** als 73 : 27 Epimerengemisch (¹H-NMR-spektroskopisch bestimmt).

 $R_F = 0.39 (E/P = 1:1).$

IR (Film) : 3210 (NH), 1090, 1065 cm⁻¹ (S=O).

300-MHz-¹H-NMR (CDCl₃, Haupt-Diast.) : $\delta = 0.077$ (s, Si(CH₃)₃), 0.963 (d, 4-H₃), 0.990 (d, 4-H₃), 2.030 (qqd, 3-H), 2.413 ("s", 9-H₃), 3.170 (dddd, X von ABMX, 2-H), 3.620, 3.709 (AB von ABX, 1-H₂), 4.165 (d, br., NH), 7.30 (m, 7-H₂), 7.62 (wie dt, 6-H₂). $J_{AB} = 10.2$ Hz, $J_{AX} = 5.2$ Hz, $J_{BX} = 4.2$ Hz, $J_{2,3} = 6.0$ Hz, $J_{3,4} = 6.9$ Hz, $J_{3,4} = 6.8$ Hz, $J_{2,NH} = 8.6$ Hz.

75-MHz-¹³C-NMR (CDCl₃, Haupt-Diast.) : δ = -0.72 (Si(CH₃)₃), 18.10 (C-4), 19.17 (C-4'), 21.11 (C-9), 28.96 (C-3), 61.83 (C-2), 63.17 (C-1), 125.26 (C-6), 129.17 (C-7), 140.78 (C-5), 143.03 (C-8).

MS (CI, Isobutan) : $m/e = 314 (15.5\%, [M+1]^{+}).$

C₁₅H₂₇NO₂SSi (313.54)

Ber. C 57.46 H 8.68 314.1611 Gef. C 57.57 H 8.68 314.1614.

S 2.1 Desilylierung von 335cAB: (R_s^{*},1S)-N-[2-methyl-1-(hydroxymethyl)propyl]*p*-toluolsulfinsäureamid (345A und 345B)

11.8 g (max. 37.8 mmol) ungereinigtes **335cAB** wurde in 150 mL Methanol gelöst und mit 6.9 g (50.0 mmol) Kaliumcarbonat versetzt. Man rührte 2 h bei Raumtemp. und stellte dabei dünnschichtchromatographisch den vollständigen Verbrauch des Substrates fest. Anschließend entfernte man das Methanol i. Vak., nahm den Rückstand in 100 mL Ether auf und goß die Suspension in 50 mL Eiswasser. Man extrahierte dreimal mit jeweils 20 mL Ether, trocknete über Magnesiumsulfat und erhielt 8.6 g (94%) rohes **345AB** als gelbes Öl. Einmalige Kristallisation aus Ether/Hexan ergab 1.33 g (15%) **345A** in diastereomerenreiner Form als weißen Festkörper vom Schmp. 115 °C. Nach säulenchromatographischer Trennung von 0.66 g des Rohproduktes (*tert*-Butylmethylether/P = 3:1) erhielt man neben 85 mg (13%) des kristallinen Isomeren **345A** ($R_F = 0.35$) 116 mg (18%) des Epimeren **345B** als farbloses Öl.

345A:

 $R_F = 0.35$ (EE/P = 3:1); 0.25 (*t*-Butylmethylether/P = 3:1).

 $[\alpha]^{20}_{D} = -118.6 (c = 1.40, MeOH).$

IR (KBr) : 3210 (OH), 3190 (NH), 1082, 1060, 1042, 1035, 1015 cm⁻¹ (S=O).

 $300-MHz^{-1}H-NMR$ (CDCl₃) : $\delta = 0.737$ (d, $4-H_3$), 0.812 (d, $4'-H_3$), 1.688 (qqd, 3-H),

-242-

2.417 (t, 9-H₃), 2.796 (dddd, M von ABMX, 2-H), 3.366, 3.578 (AB von ABMX, 1-H₂), 4.392 (d, br., N*H*), 4.682 (dd, O*H*), 7.30 (m, 7-H₂), 7.56 (wie dt, 6-H₂). $J_{AB} = 11.9$ Hz, $J_{AM} = 2.5$ Hz, $J_{AX} = 10.3$ Hz, $J_{BM} = 8.6$ Hz, $J_{BX} = 2.5$ Hz, $J_{2,3} = 5.3$ Hz, $J_{2,NH} = 9.9$ Hz, $J_{3,4} = 6.8$ Hz, $J_{3,4'} = 6.9$ Hz, $J_{7,9} = 0.7$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 18.23 (C-4), 19.65 (C-4'), 21.31 (C-9), 30.29 (C-3), 61.81 (C-2), 64.17 (C-1), 126.37 (C-6), 129.38 (C-7), 138.72 (C-5), 141.39 (C-8).

MS (CI, Isobutan) : $m/e = 242 (11.7\%, [M+1]^+)$.

C12H19NO2S (241.36)

Ber. C 59.72 H 7.93 Gef. C 59.74 H 8.05.

345B:

 $R_F = 0.29$ (EE/P = 1:1); 0.20 (*t*-Butylmethylether/P = 3:1).

 $[\alpha]^{20}_{D} = +82.8 \text{ (c} = 1.38, \text{MeOH)}.$

IR (Film) : 3380 (OH), 3200 (NH), 1045 cm-1 (S=O).

60-MHz-¹H-NMR (CDCl₃) : $\delta = 0.93$ (d, 4-H₃), 0.97 (d, 4'-H₃), 1.8 (wie qq, 3-H), 2.37 (s, 9-H₃), 2.9-4.1 (m, 1-H₂, 2-H, N*H*), 4.40 (d, O*H*), 7.15, 7.50 (wie AB, 7-H₂ u. 6-H₂). $J_{34} = 7$ Hz, $J_{1OH} = 10$ Hz.

MS (CI, Isobutan) : $m/e = 242 (20.7\%, [M+1]^+)$.

C12H19NO2S (241.36)

Ber. C 59.72 H 7.93 Gef. C 59.76 H 7.86.

S 3 Darstellung der *tert*-Butylsulfinamide

S 3.1 2-Methylpropan-2-sulfinsäurechlorid (353)

20.0 g (0.82 mol) Magnesiumpulver wurden in einem 1000 mL Rundkolben mit Ether bedeckt. Durch vorsichtiges Unterschichten mit 0.2 mL Ethyliodid und leichtes Erwärmen startete man die Reaktion. Anschließend tropfte man 50.0 g (0.54 mol) *tert*-Butylchlorid (gelöst in 390 mL Ether) hinzu (Tropfgeschwindigkeit 60 - 80 Tropfen/min; Dauer ca. 3 h), erhitzte 15 min lang zum Sieden, kühlte dann auf 0 °C ab und saugte die Lsg. unter Argon durch eine Filterfritte (**G 3**) in einen zweiten 1000mL Kolben. Dann kühlte man mittels eines Eis/Kochsalz-Gemisches auf -15 °C ab und leitete unter Verwendung einer Gummiblase als Puffervolumen über Phosphorpentoxid getrocknetes Schwefeldioxid ein, wobei man darauf achtete, daß die Innentemperatur 5 °C nie überstieg. Nachdem die Temp. wieder auf -5 °C gefallen war und kein Schwefeldioxid mehr aufgenommen wurde, brach man die Reaktion durch vorsichtige Zugabe von 25 mL Wasser ab, rührte 30 min bei -10 °C nach und entfernte dann sorgfältig alle flüchtigen Bestandteile i. Vak..

Man erhielt 92.4 g (95%) des Magnesiumsulfinats, welches man ohne weitere Reinigung zur Synthese des Chlorides einsetzte.

Zu 6.58 g (55.3 mmol) Thionylchlorid fügte man portionsweise bei 0 °C 5.0 g (max. 27.7 mmol) ungereinigtes Magnesiumsulfinat, rührte 30 min bei Raumtemp. nach, addierte dann 10 mL Dichlormethan, erhitzte zur Vervollständigung der Reaktion 1 h unter Rückfluß und destillierte i. Vak..

Man erhielt 1.87 g (48%, bez. auf *tert*-Butylchlorid) **353** als gelbliche, widerwärtig riechende Flüssigkeit vom Sdp. 58 °C / 15 Torr (Lit.¹⁴⁰⁾ 62 °C / 15 Ton).

S 3.2 (*R_S**,1*S*)-*N*-[2-Methyl-1-(trimethylsilyloxymethyl)propyl]-2-methylpropan-2-sulfinsäureamid (354A und 354B)

In eine auf -40 °C gekühlte Lsg. von 0.80 g (4.5 mmol) (S)-O-Trimethylsilylvalinol

334c und 0.66 g (9.0 mmol) Ethyldimethylamin in 5 mL Dichlormethan tropfte man 0.70 g (5.0 mmol) **353** (gelöst in 1 mL Dichlormethan). Nach dem Abklingen der stark exothermen Reaktion entfernte man das Kühlbad, rührte 2 h bei Raumtemp. nach, goß dann die Reaktionsmischung auf 30 mL Wasser und 20 mL Ether, extrahierte zweimal mit jeweils 10 mL Ether, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und erhielt 1.16 g (83%) **354AB** als bereits > 90% reines (¹H-NMR-spektroskopisch bestimmt) Diastereomerengemisch. Die säulenchromatographische Reinigung des Rohproduktes (36 g Kieselgel, erst E/P = 1:1, dann E/P = 3:1) ergab unter teilweiser Desilylierung 0.56 g (40%) unpolares **354A** und 0.37 g (27%) polares **354B** als farblose Öle.

354B:

 $R_F = 0.13 (E/P = 1:1).$

 $[\alpha]_{D}^{20} = -41.0 \text{ (c} = 2.5, \text{CH}_2\text{Cl}_2\text{)}.$

IR (Film) : 3230 (NH), 1060 cm-1 (S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 0.107 (s, Si(CH₃)₃), 0.963 (d, 4-H₃), 1.000 (d, 4'-H₃), 1.213 (s, 6-H₉), 2.015 (qqd, 3-H), 3.075 (ddt, X von ABX, 2-H), 3.363 (d, br., N*H*), 3.545, 3.604 (AB von ABX, 1-H₂).

 $J_{AB} = 10.2 \text{ Hz}, J_{AX} = 5.4 \text{ Hz}, J_{BX} = 5.5 \text{ Hz}, J_{2,3} = 5.4 \text{ Hz}, J_{2,NH} = 6.8 \text{ Hz}, J_{3,4} = J_{3,4'} = 7.0 \text{ Hz}.$

75-MHz-¹³C-NMR (CDCl₃) : δ = -0.69 (Si(*C*H₃)₃), 18.05 (C-4), 19.21 (C-4'), 22.47 (C-6), 55.76 (C-5), 62.78 (C-2), 63.52 (C-1).

MS (CI, Isobutan) : $m/e = 280 (100\%, [M+1]^+)$.

CH - Analyse des desilylierten Produkts:

C₉H₂₁NO₂S (207.34)

Ber. C 52.14 H 10.21 Gef. C 52.26 H 10.29.

354A:

 $R_F = 0.25 (E/P = 1:1).$

 $[\alpha]^{20}_{D} = +44.0 \text{ (c} = 3.03, \text{CH}_2\text{Cl}_2\text{)}.$

IR (Film) : 3230 (NH), 1055 cm-1 (S=O).

300-MHz-¹H-NMR (CDCl₃) : $\delta = 0.123$ (s, Si(CH₃)₃), 0.909 (d, 4-H₃), 0.916 (d, 4'-H₃), 1.971 (qqd, 3-H), 3.032 (dddd, X von ABMX, 2-H), 3.624 (d, br., NH), 3.692, 3.732 (AB von ABMX, 1-H₂).

-245-

 $J_{AB} = 10.1 \text{ Hz}, J_{AX} = 4.8 \text{ Hz}, J_{BX} = 4.7 \text{ Hz}, J_{2,3} = 5.8 \text{ Hz}, J_{2,NH} = 7.8 \text{ Hz}, J_{3,4} = 6.8 \text{ Hz}.$

75-MHz-¹³C-NMR (CDCl₃) : δ = -0.64 (Si(*C*H₃)₃), 18.24 (C-4), 18,95 (C-4'), 22.64 (C-6), 29.20 (C-5), 62.53 (C-2), 62.99 (C-1).

MS (CI, Isobutan) : $m/e = 280 (100\%, [M+1]^+)$.

C₁₂H₂₉NO₂SSi (279.52)

Ber. C 51.56 H 10.46 Gef. C 51.32 H 10.26.

S 4 Synthese der (*RS*_s,1*R*,2*S*,5*R*)-Menthylsulfinate 335bAB

S 4.1 (1R,2S,5R)-Carbamidsäurementhylester 334b

Eine Mischung aus 7.80 g (50.0 mmol) (-)-Menthol und 12.0 g (0.20 mol) Harnstoff wurde unter Rühren 1.5 h auf 190 °C erhitzt. Nach dem Abkühlen nahm man den Rückstand in 50 mL EE und 50 mL. Wasser auf, erhitzte zum Sieden, filtrierte, extrahierte den Niederschlag mit weiteren 50 mL siedendem EE, trennte die Phasen, trocknete über Magnesiumsulfat und entfernte das Solvens i. Vak.. Dabei erhielt man zwischen 6.25 g (63%) und 7.50 g (75%) **334b**, welches mit wechselnden Mengen Menthol (5 - 15%, kapillargaschromatographisch bestimmt) verunreinigt war. Kristallisation aus EE oder Ethanol ergab ein zu etwa 95% reines Produkt (50 - 60%, Ausbeute).

 $R_F = 0.33 \text{ (E/P = 1:l)}$ Schmp.: 162 °C (nach Chromatographie), Lit. $^{144b)}$: 165 °C (EtOH).

 $R_{t} = 6.4 \text{ min (150 °C, iso); } R_{t}(\text{Menthol}) = 3.0 \text{ min (150 °C, iso)}$ $[\alpha]^{20}_{D} = -84.7 \text{ (c} = 1.11, \text{ CHCl}_{3}), \text{ Lit.}^{144b}: -85.2 \text{ (c} = 1.0, \text{ CHCl}_{3}).$

IR (KBr) : 3440, 3320, 3260, 3205 (NH), 1685 cm⁻¹ (C=O).

300-MHz-¹H-NMR (CDCl₃) : $\delta = 0.797$ (d, 9-H₃), 0.900 (d, 9'-H₃), 0.905 (d, 10-H₃), 1.318 (dddd, 7-H), 1.39-1.7 (m, 3-H', 4-H, 5-H₂ und 6-H₂), 1.934 (qqd, 8-H), 2.050 (m, 3-H), 4.532 (td, 2-H), 4.59 (br., N*H*).

 $J_{2,3} = 4.5$ Hz, $J_{2,7} = 10.7$ Hz, $J_{6,7} = 3.4$ Hz, $J_{7,8} = 2.9$ Hz, $J_{8,9} = J_{8,9} = 6.9$ Hz.

75-MHz-¹³C-NMR (CDCl₃/DMSO-d⁶ = 8:2) : δ = 16.47 (C-9), 20.69 (C-9'), 21.99 (C-10), 23.55 (C-6), 26.14 (C-8), 31.26 (C-4), 34.23 (C-5), 41.39 (C-3), 47.26 (C-7), 73.93 (C-2), 157.04 (C-1).

-247-

MS (CI, Isobutan) : m/e = 399 (5.8%, [M+1]⁺), 200 (21.3%, [M+1]⁺).

C₁₁H₂₁NO₂ (199.29)

Ber. C 66.29 H 10.62 Gef. C 66.37 H 10.63.

S 4.2 (RS₅,1R,2S,5R)-N-(Menthyloxycarbonyl)-p-toluolsulfinsäureamid (335bAB)

Mit 4.98 g (25.0 mmol) **334b** erhielt man gemäß der in Lit.⁸⁴⁾ angegebenen Arbeitsvorschrift 8.22 g (98%) der ungereinigten Diastereomeren **335bAB** als orangefarbenes Öl, das wegen seiner Instabilität ohne weitere Reinigung zur Chlorierung mit *tert*-Butylhypochlorit eingesetzt wurde.

S 5 Allg. Arbeitsvorschrift zur Synthese der Sulfonimidoylchloride⁸³⁾

1.0 Äquiv. des betreffenden Sulfinamides wurden in 5 mL/mmol Tetrachlormethan gelöst bzw. suspendiert, auf 0 °C gekühlt und in einem abgedunkelten Abzug tropfenweise so mit 1.25 Äquiv. *tert*-Butylhypochlorit versetzt, daß die Innentemp. nicht über 5 °C anstieg. Dabei empfiehlt es sich, das Hypochlorit aus einer 5 mL Spritze zuzudosieren, die genau in einen 14.5 mm Schliff der Apparatur paßt (jeder Kontakt des *tert*-Butylhypochlorits mit Gummi ist zu vermeiden !^{146b}). Man rührte 15 min bei 0 °C nach, entfernte dann, ohne den Kolben zu erwärmen, das Lösungsmittel i. Vak. (mit Kaliumhydroxidplätzchen beschickte Schutzfalle zur Zerstörung überschüssigen Hypochlorits verwenden), und setzte den verbleibenden Rückstand ohne weitere Reinigung ein.

-248-

S 6 Allg. Arbeitsvorschrift zur Synthese der Sulfonimidoylfluoride⁵⁹⁾

In eine Suspension von 2.0 Äquiv. Kaliumfluorid in 2.5 mL/mmol Acetonitril tropfte man bei Raumtemp. 1.0 Äquiv. des Chlorides, gelöst in Acetonitril (0.3 mL/mmol). Nach Hinzufügen von 1 mol-% 18-Krone-6 rührte man zwischen 2 und 12 h bei Raumtemp. nach, entfernte dann das Solvens i. Vak., nahm den Rückstand in Ether (3 mL/mmol) auf, filtrierte, befreite erneut vom Solvens und reinigte durch Säulenchromatographie oder Destillation.

S 6.1 (*RS_s*)-*N*-(2-Propenyl)-*p*-toluolsulfonimidoylfluorid (195)

Mit 5.85 g (max. 30.0 mmol) ungereinigtem *p*-Toluolsulfinsäureallylamid (aus Allylamin und *p*-Toluolsulfinsäurechlorid **333** gemäß Lit.¹⁴⁸⁾ in quant. Ausbeute synthetisiert), 4.04 g (36.9 mmol) *tert*-Butylhypochlorit und 3.48 g (60.0 mmol) Kaliumfluorid erhielt man nach Chromatographie an 70 g Kieselgel (E/P = 1:5) 5.30 g (83%, bez. auf Allylamin) **195** als farbloses Öl.

 $R_F = 0.62 (E/P = 1:1)$ Sdp.: 76 °C/8 x 10-³ Torr.

IR (Film) : 1200, 1180 cm⁻¹ (N=S=O).

60-MHz-¹H-NMR (CDCl₃) : δ = 2.40 (s, 8-H₃), 4.0 (ddt, 1-H₂), 5.1 (ddt, 3'-H), 5.2 (ddt, 3-H), 5.9 (ddt, 2-H), 7.3, 7.95 (wie AB, 6-H₂, und 5-H₂).

 $J_{1-H,F} = 8$ Hz, $J_{1,2} = 5$ Hz, $J_{1,3} = 1.6$ Hz, $J_{3,3'} \approx 1$ Hz, $J_{2,3} = 17$ Hz, $J_{2,3'} = 10$ Hz.

MS (CI, Isobutan) : $m/e = 214 (100\%, [M+1]^+)$.

C10H12FNOS (213.28)

Ber.: 214.0702

S 6.2 (*RS_s*,1*S*)-*N*-(1-Methylbenzyl)-*p*-toluolsulfonimidoylfluorid (337aAB)

Mit 2.94 g (10.0 mmol) **336cAB** (entsprechend der AAV in Abschnitt **S** 5 hergestellt) und 1.2 g (20.0 mmol) Kaliumfluorid erhielt man nach 5.5 h Reaktionsdauer und chromatographischer Reinigung (70 g Kieselgel, E/P = 1:5) 2.38 g (86%, bez. auf eingesetztes Sulfinamid **335aAB**) **337aAB** als weißen Festkörper vom Schmelzpunkt 69 °C.

 $R_F = 0.58$ (E/P = 1:1) (48:52 Diast. Gemisch, ¹H-NMR-spektr. bestimmt).

IR (KBr) : 1200, 1180 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.600 (dd, 2-H₃), 1.642^{*} (d, 2-H₃), 2.429 ("s", 7-H₃), 2.436^{*} ("s", 7-H₃), 5.08 (qd, 1-H), 5.11^{*} (qd, 1-H), 7.2-7.5 (m, Aryl-H), 7.95 (m, 4-H₂). $J_{1,2} = 6.7$ Hz, $J_{1-H,F} = 4.5$ Hz, $J_{2-H,F} = 0.6$ Hz^{**}.

75-MHz-¹³C-NMR (CDCl₃) := δ 21.39 (C-7), 26.38 (C-2), 53.63, 53.68^{*} (C-1), 125.89, 125.94, 126.85, 126.94, 127.36, 127.43, 128.28, 129.54 (Aryl-C), 133.31, 133.69^{*} (C-3), 144.88, 145.02^{*} (C-6).

* zweites Diastereomer

** nur ein Diastereomer.

MS (CI, Isobutan) : $m/e = 278 (25.3\%, [M+1]^+).$

-249-

Gef.: 214.0713.

C₁₅H₁₆FNOS (277.36)

Ber. C 64.96 H 5.81 Gef. C 65.13 H 5.79

S 6.3 (*RS₅*,1*R*,2*S*,5*R*)-*N*-(Menthyloxycarbonyl)-*p*-toluolsulfonimidoylfluorid (337bAB)

Mit 8.0 g (max. 23.7 mmol) **336bAB** und 6.90 g (0.12 mol) Kaliumfluorid erhielt man nach Säulenchromatographie (130 g Kieselgel, E/P = 1:4) 2.81 g (33%, bez. auf Menthylcarbamat **3346**) **337bAB** als Gemisch der Epimeren.

 $[\alpha]^{20}_{D} = -84.9$ (c = 0.85, CH₂Cl₂), nach einmaliger Krist. aus Hexan.

IR (KBr) : 1690 (C=O), 1260, 1100 cm-¹ (N=S=O).

75-MHz- 13 C-NMR (CDCl₃) : δ = 16.18 (C-9), 20.71 (C-9'), 21.67 (C-15), 21.90 (C-10), 23.29 (C-6), 25.99 (C-7), 31.35 (C-4), 34.12 (C-5), 40.64 (C-3), 46.92 (C-7), 77.51 (C-2), 127.96 (C-12), 130.01 (C-13), 130.70 (C-11), 147.02 (C-14), 153.35 (C-1).

75.4-MHz-¹⁹F-NMR (CDCl₃) : $\delta = 68.41$ (Haupt-Diast.), 68.39 (Neben-Diast.).

MS (CI, Isobutan) : $m/e = 356 (2.7\%, [M+1]^+)$.

 $C_{18}H_{26}FNO_3S$ (355.47)

Ber. C 60.82 H 7.37 Gef. C 60.68 H 7.23.

S 7 Synthese von (R)-S-tert-Butyl-N-(2-propenyl)-S-(p-tolyl)-sulfoximid (327)

Zu einer Lösung von 0.56 g (5.0 mmol) KTB in 7 mL THF tropfte man bei -22 °C 0.70 g (3.30 mmol) 272, gelöst in 3 mL THF. Anschließend entfernte man das Kühlbad, rührte 15 min nach, kühlte erneut auf -22 °C und injizierte 0.80 g (6.6 mmol) Allylbromid. Nach Entfernung des Kühlbades fügte man 3 mL THF hinzu um die Mischung rührfähig zu halten, rührte 3 h bei Raumtemp. nach, goß die Reaktionsmischung dann auf 30 mL Eis und 20 mL Ether, sättigte die wäßrige Phase mit Kochsalz, etherte dreimal mit jeweils 20 mL aus, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte an 36 g Kieselgel (E/P = 1:2). Man erhielt 0.62 g (75%) **327** als farbloses Öl.

 $[\alpha]_{D}^{20} = -100.4$ (c = 1.22, Aceton).

IR (Film) : 1200, 1110 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : $\delta = 1.362$ (s, 5-H₃), 2.440 ("s", 10-H₃), 3.456, 3.633

-253-

Asym. d^3 -Synthone

(AB-Teil, 1-H₂), 5.050 (dddd, H_z), 5.340 (dddd, H_x), 5.963 (dddd, H_M), 7.31 (m, 8-H₂), 7.70 (wie dt, 7-H₂).

 $J_{AB} = 16.2$ Hz, $J_{A,M} = 4.6$ Hz, $J_{A,X} = 1.9$ Hz, $J_{B,M} = 5.1$ Hz, $J_{B,X} = 1.9$ Hz, $J_{B,Z} = 1.7$ Hz, $J_{M,X} = 17.0$ Hz, $J_{M,Z} = 10.1$ Hz, $J_{X,Z} = 2.2$ Hz, $J_{A,Z} = 1.7$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 20.97 (C-10), 23.61 (C-5), 45.43 (C-1), 59.56 (C-4), 112.94 (C-3), 128.96 (C-7), 129.40 (C-6), 131.05 (C-8), 138.18 (C-2), 148.82 (C-9).

C14H21NOS (251.39)

Ber. C 66.89 H 8.42 Gef. C 66.80 H 8.52.

S 8 Umsetzung von 336cAB mit 2-Butenol: (1*S*)-*N*-[2-methyl-1-(trimethylsilyloxymethyl)propyl]-*p*-toluolsulfonsäureamid (340)

3.48 g (10.0 mmol) **336cAB** (aus 75 : 25 Gemisch der epimeren Sulfinamide **335cAB** synthetisiert) wurden bei 0 °C zu einer Lsg. von 1.08 g (15.0 mmol) 2-Butenol in 1.83 g (25.0 mmol) Ethyldimethylamin getropft. Man rührte 2 h bei Raumtemp. nach, zog die flüchtigen Bestandteile i. Vak. ab und erhielt ein gelbliches Öl, das zu 94% (kapillargaschromatographisch bestimmt) aus **340** bestand.

 $R_F = 0.49 \ (E/P = 1:1).$

300-MHz-¹H-NMR (CDCl₃) : δ = -0.072 (s, Si(CH)₃)₃), 0.751 (d, 4-H₃), 0.788 (d, 4'-H₃), 1.816 (qqd, 3-H), 2.330 ("s", 9-H₃), 2.932 (dddd, 2-H), 3.182, 3.395 (je dd, 1-H und l'-H),

5.185 (d, N*H*), 7.2 (m, 7-H₂), 7.7 (wie dt, 6-H₂). $J_{1,2} = 5.5$ Hz, $J_{1',2} = 3.8$ Hz, $J_{1,1'} = 10.4$ Hz, $J_{2,3} = 6.7$ Hz, $J_{2,NH} = 8.7$ Hz, $J_{3,4} = 6.8$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = -0.97 (Si(*C*H₃)₃), 17.91 (C-4), 18.97 (C-4'), 21.21 (C-9), 28.91 (C-3), 59.86 (C-2), 61.40 (C-1), 126.86 (C-6), 129.21 (C-7), 138.34 (C-5), 142.71 (C-8).

S 9 Synthese der Sulfonimidamide

S 9.1 Darstellung von $(R_s^*, 1S)$ -*N*-[2-Methyl-1-(trimethylsilyloxymethyl)propyl]-*N'*-(2-propenyl)-*p*-toluolsulfonimidamid (346A und 346B)

In eine Lsg. von 3,48 g (10.0 mmol) **336cAB** (75 : 25 Epimerengemisch) in 5 mL Dichlormethan tropfte man bei 0 °C 1.43 g (25.0 mmol) Allylamin. Anschließend entfernte man das Eisbad, rührte 24 h bei Raumtemp. nach, goß das Reaktionsgemisch auf 50 mL Wasser und 30 mL Chloroform, extrahierte zweimal mit jeweils 20 mL Chloroform, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte den Rückstand an 70 g Kieselgel (erst E/P = 1:5, dann 1:3). Man erhielt 2.15 g des unpolaren **346A** und 0.61 g des polaren Diastereomeren **346B** als farblose Öle (insg. 2.76 g (75%) im Verhältnis 78 : 22; Verhältnis im Rohprodukt: 78 : 22; kapillargaschromatographisch bestimmt).

-252-

 $R_F = 0.54$ (E/P = 1:1), $R_t = 8.7$ min (200 °C, iso).

 $[\alpha]_{D}^{20} = +15.7 \text{ (c} = 1.61 \text{ Aceton}).$

IR (KBr) : 3270 (NH), 1250, 1100 cm-1 (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : $\delta = 0.132$ (s, OSi(*CH*₃)₃), 0.924 (d, 3-H₃), 0.979 (d, 3'-H₃), 1.666 (dqq, 2-H), 2.393 ("s", 12-H₃), 3.3-3.75 (m, 5-H₂, 4-H₂ und 1-H), 5.029 (ddt, H_Z), 5.137 (ddt, H_X), 5.744 (ddt, H_M), 7.24 (m, 10-H₂), 7.84 (wie dt, 9-H₂). $J_{1,2} = 6.7$ Hz, $J_{2,3} = 6.7$ Hz, $J_{MX} = 17.1$ Hz, $J_{MZ} = 10.1$ Hz, $J_{XZ} = 1.5$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = -0.83 (Si(*C*H₃)₃), 18.47 (C-3), 19.81 (C-3'), 21.03 (C-12), 30.49 (C-2), 45.85 (C-5), 59.79 (C-1), 66.05 (C-4), 115.75 (C-7), 127.35 (C-9), 128.84 (C-10), 134.87 (C-6), 139.12 (C-8), 141.52 (C-11).

MS (CI, Isobutan) : $m/e = 369 (100\%, [M+1]^+)$.

 $C_{18}H_{32}N_2O_2SSi$ (368.62)

Ber. C 58.65 H 8.75 Gef. C 58.59 H 8.60.

346B:

 $R_F = 0.46 (E/P = 1:1).$

IR (Film) : 3250 (NH), 1250, 1100 cm-1 (N=S=O).

 $\begin{aligned} & 300\text{-MHz-}^{1}\text{H-NMR} \text{ (CDCl}_3): \delta = 0.025 \text{ (s, Si}(CH_3)_3), 0.896 \text{ (d, 3-H}_3), 0.925 \text{ (d, 3'-H}_3), 1.6 (br., \\ & \text{NH}), 1.912 \text{ (qqd, 2-H)}, 2.403 ("s", 12-H_3), 3.138 \text{ (dt, 1-H)}, 3.294, 3.503 \text{ (AB von ABX, 5-H und 5'-H)}, 3.650, 3.699 \text{ (AB von ABX, 4-H und 4'-H)}, 5.065 \text{ (dtd, } H_Z) 5.226 \text{ (ddt, } H_X), 5.876 \text{ (ddt, } H_M), 7.25 (m, 10\text{-}H_2), 7.80 \text{ (wie dt, 9-H}_2). \end{aligned}$

$$\begin{split} J_{1,2} &= 5.2 \text{ Hz}, \, J_{1,4} \approx J_{1,4'} \approx 5.5 \text{ Hz}, \, J_{2,3} = 6.8 \text{ Hz}, \, J_{4,4'} \approx 15 \text{ Hz}, \, J_{5,M} \approx 5.5 \text{ Hz}, \, J_{5,M} \approx 5.0 \text{ Hz}, \, J_{5,5'} \approx 10 \\ \text{Hz}, \, J_{5,X} &= 1.6 \text{ Hz}, \, J_{5,Z} = 1.6 \text{ Hz}, \, J_{M,X} = 17.0 \text{ Hz}, \, J_{M,Z} = 10.1 \text{ Hz}, \, J_{X,Z} = 1.6 \text{ Hz}. \end{split}$$

-255-

75-MHz-¹³C-NMR (CDCl₃) : δ = -0.66 (Si(*C*H₃)₃), 17.65 (C-3), 19.68 (C-3'), 21.34 (C-12), 29.65 (C-2), 45.78 (C-5), 60.21 (C-1), 63.17 (C-4), 115.30 (C-7), 127.44 (C-9), 129.55 (C-10), 136.29 (C-6), 138.60 (C-8), 142.19 (C-11).

MS (CI, Isobutan) : $m/e = 369 (100\%, [M+1]^+)$.

C₁₈H₃₂N₂O₂SSi (368.62)

Ber. C 58.65 H 8.75 Gef. C 58.52 H 8.65.

S 9.2 Desilylierung und Methylierung von 346: (*R*₅*,1*S*)-*N*-[1-Hydroxymethyl-2methylpropyl]-*N'*-methyl-*N'*-(2-propenyl)-*p*-toluolsulfonimidamid (349) und (*R*₅*,1*S*)-*N*-[1-Methoxymethyl-2-methylpropyl]-*N'*-methyl-*N'*-(2-propenyl)*p*-toluolsulfonimidamid (348)

In eine Suspension von 0.50 g (3.6 mmol) Kaliumcarbonat in 10 mL Methanol tropfte man bei Raumtemp. 1,10 g (3.0 mmol) des unpolareren Isomeren **346A** ($R_F = 0.54$), gelöst in 1 mL Methanol. Man rührte 30 min bei Raumtemp. nach, entfernte die flüchtigen Bestandteile i. Vak., extrahierte den Rückstand zweimal mit jeweils 20 mL siedendem Ether, filtrierte und erhielt 0.89 g (quant.) der desilylierten Verbindung **347** als weißen Festkörper.

Diesen nahm man in 5 mL THF und 3 mL *tert*-Butanol auf und tropfte die Lsg. bei 0 °C zu 0.74 g (6.60 mmol) KTB in 5 mL THF. Man rührte 30 min bei 0 °C nach und injizierte dann 1.42 g (10.0 mmol) Methyliodid. Nach weiteren 30 min bei 0 °C entfernte man das Eisbad, rührte 16 h bei Raumtemp., goß dann auf 30 mL eiskalte, ges. Ammoniumchloridlsg. und 30 mL Ether, extrahierte zweimal mit jeweils 30 mL Ether, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte an 36 g Kieselgel (erst E/P = 3:1, dann E/P = 1:1).

Asym. d^3 -Synthone

Man erhielt 398 mg (41%) 348 und 236 mg (25%) 349 als farblose Öle.

 $[\alpha]^{20}_{D} = +27.2 \text{ (c} = 1.83, \text{CH}_2\text{Cl}_2\text{)}.$

IR (Film) : 1280, 1120 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (C_6D_6) : $\delta = 1.184$ (d, 3-H₃), 1.253 (d, 3'-H₃), 2.032 (tt, 12-H₃), 2.306 (qqd, 2-H), 2.602 (t, NCH₃), 3.281 (s, OCH₃), 3,452 (ddddq, 5'-H), 3,585 (dd, 4-H), 3.622 (dd, 4'-H), 3.809 (ddddq, 5-H), 3.934 (ddd, 1-H), 4.992 (ddt, 7'-H), 4.996 (ddt, 7-H), 5.738 (dddd, 6-H), 6.951 (m, 10-H₂), 7,93 (wie dtd, 9-H₂).

 $J_{1,2} = 3,8$ Hz, $J_{1,4} = 5.8$ Hz, $J_{1,4'} = 6.6$ Hz, $J_{2,3} = J_{2,3'} = 6.9$ Hz, $J_{4,4'} = 9.2$ Hz, $J_{5,5'} = 14.2$ Hz, $J_{5,6} = 6.0$ Hz, $J_{5',6} = 6.5$ Hz, $J_{5,7} = 1.5$ Hz, $J_{5,7'} = 1.3$ Hz, $J_{5,NMe} = 0.5$ Hz, $J_{6,7} = 17.5$ Hz, $J_{6,7'} = 9.7$ Hz, $J_{7,7'} = 1.6$ Hz, $J_{9,12} = J_{10,12} = 0.4$ Hz.

 $C_{17}H_{28}N_2O_2S\,(324.49)$

Ber. C 62.93 H 8.70 Gef. C 63.07 H 8.71.

 $[\alpha]^{20}_{D} = +8.9 \ (c = 5.02 \ CH_2Cl_2).$

IR (Film) : 3450 (OH), 1275, 1150 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.073 (d, 3-H₃), 1.095 (d, 3'-H₃), 1.934 ("s", 12-H₃), 2.068 (qqd, 2-H), 2.453 (s, NCH₃), 2.55 (br., OH), 3.429 (dd, 5-H), 3.54 (m, 4-H₂), 3.80 (m, 1-H und 5'-H), 4.878 (ddt, 7-H), 4.882 (ddt, 7'-H), 5.601 (ddt, 6-H), 6.85 (m, 10-H₂), 7.75 (wie dt, 9-H₂). $J_{1,2}$ = 4.8 Hz, $J_{2,3}$ = 6.8 Hz, $J_{5,6}$ = 6.4 Hz, $J_{5,7}$ = 1.2 Hz, $J_{5,5}$ = 13.7 Hz, $J_{6,7}$ = 17.6 Hz, $J_{6,7}$ = 9.6 Hz, $J_{7,7}$ = 1.2 Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 18.70 (C-3), 19.96 (C-3'), 21.07 (C-12), 31.96 (C-2), 35.20 (NCH₃), 54.19 (C-5), 61.54 (C-1), 65.29 (C-4), 117.98 (C-7), 128.13 (C-9), 129.32 (C-10), 134.01 (C-6), 135.56 (C-8), 142.08 (C-11).

C₁₆H₂₆N₂O₂S (310.46)

Ber. C 61.90 H 8.44 Gef. C 61.91 H 8.51.

-258-

S 10 Darstellung der S-Allylsulfoximide 338

S 10.1 (*R*^{*}₅,1*S*)-*N*-(1-Methylbenzyl)-*S*-(2-propenyl)-*S*-(*p*-tolyl)sulfoximid (338aA und 338aB)

Zu 728 mg (2.2 mmol) Allyltributylzinn¹⁴³⁾ in 2 mL THF tropfte man bei -78 °C 1.1 mL (2.0 mmol) einer 1.76 M Lsg. von *n*-BuLi in Hexan und rührte 30 min nach. Dann fügte man 277 mg (1.0 mmol) der Fluoride **337aAB**, gelöst in 1.0 mL THF, hinzu, rührte 2 h bei -78 °C, goß die Reaktionsmischung dann auf eine Mischung aus 10 mL Ether und 10 mL ges. Ammoniumchloridlsg., sättigte die Unterphase mit Kochsalz und etherte zweimal mit jeweils 10 mL aus. Nach chromatographischer Reinigung des nach Entfernung des Solvens i. Vak. erhaltenen Rohproduktes, erhielt man 79 mg (26%) des unpolaren **338aA** und 81 mg (26%) des polaren Diastereomeren **338aB** (insg. 160 mg, 52%).

338aB:

$$\begin{split} R_F &= 0.26 \; (E/P = 1{:}1). \\ [\alpha]^{20}{}_D &= {-}170.0 \; (c = 2.79, \, CH_2 Cl_2). \end{split}$$

IR (Film) : 1240, 1130 cm^{-1} (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.440 (d, 5-H₃), 2.444 (t, 10-H₃), 3.765 (dddd, 1-H), 3.857 (dddd, 1'-H), 4.435 (q, 4-H), 4.922 (ddt, 3'-H), 5.152 (ddt, 3'-H), 5.820 (dddd, 2-H),

7.1-7.5 (m, Aryl-H), 7.80 (wie dt, 7-H₂).

 $J_{1,2} = 7.1 \text{ Hz}, J_{1',2} = 7.6 \text{ Hz}, J_{1,3} = 1.2 \text{ Hz}, J_{1',3} = 1.2 \text{ Hz}, J_{1,3'} = 0.8 \text{ Hz}, J_{1',3'} = 0.8 \text{ Hz}, J_{1,1'} = 13.9 \text{ Hz}, J_{2,3} = 17.1 \text{ Hz}, J_{2,3'} = 10.1 \text{ Hz}, J_{3,3'} = 1.4 \text{ Hz}, J_{4,5} = 6.6 \text{ Hz}, J_{8,10} = 0.8 \text{ Hz}.$

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.47 (C-10), 27.38 (C-5), 53.52 (C-4), 60.94 (C-1), 123.17 (C-3), 126.01, 126.18, 126.26, 128.06, 129.30, 129.45, (Aryl-C und C-2), 135.49 (C-6), 143.40 (quart. Phenyl-C), 147.76 (C-9).

MS (CI, Methan) : $m/e = 300 (58.2\%, [M+1]^+)$.

C₁₈H₂₁NOS (299.44)

Ber. 300.1422

Gef. 300.1414.

338aA:

 $R_F = 0.33 (E/P = 1:1).$

 $[\alpha]^{20}_{D} = -48.5 \ (c = 2.12, CH_2Cl_2).$

IR (Film) : 1240, 1130 cm⁻¹ (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : δ = 1.500 (d, 5-H₃), 2.383 (t, 10-H₃), 3,844 (dddd, 1-H), 3.909 (dddd, 1'-H), 4.291 (q, 4-H), 5.023 (ddt, 3-H), 5.232 (3'-H), 5.808 (ddt, 2-H), 7.1-7.35 (m, Aryl-H), 7.54 (wie dt, 7-H₂). $J_{1,2} = J_{1',2} = 7.4$ Hz, $J_{1,3} = J_{1',3} = 1.3$ Hz, $J_{1,3'} = J_{1',3'} = 0.7$ Hz, $J_{1,1'} = 14.0$ Hz, $J_{2,3} = 17.1$ Hz,

 $J_{2,3'} = 10.1$ Hz, $J_{3,3'} = 1.3$ Hz, $J_{4,5} = 6.6$ Hz, $J_{8,10} = 0.7$ Hz.

75-MHz⁻¹³C-NMR (CDCl₃) : δ = 21.41 (C-10), 28.13 (C-5), 54.12 (C-4), 61.73 (C-1), 123.34 (C-3), 125.94, 126.11, 127.97, 129.38, 129.75, (Aryl-C), 134.61 (C-6), 143.28 (quart. Phenyl-C), 147.30 (C-9).

MS (CI, Methan) : $m/e = 300 (55.8\%, [M+1]^+)$.

Asym. d³-Synthone

-260-

C₁₈H₂₁NOS (299.44)

Ber. 300.1423 Gef. 300.1419.

S 10.2 (*RS_s*,1*R*,2*S*,5*R*)-*N*-(Menthyloxycarbonyl)-*S*-(2-propenyl)-*S*-(*p*-tolyl)sulfoximid (338bAB)

Zu einer auf -78 °C gekühlten Lsg. von 364 mg (1.1 mmol) Allyltributylstannan¹⁴³⁾ in 2 mL THF tropfte man 0.63 mL (1.1 mmol) einer 1.76 M Lsg. von *n*-BuLi in Hexan. Man rührte 15 min nach und injizierte 355 mg (1.0 mmol) **337bAB**, gelöst in 2 mL THF.

Nach 4 h goß man die Mischung auf 10 mL ges. Ammoniumchloridlsg. und 10 mL Ether, sättigte die wäßrige Phase mit Kochsalz, extrahierte dreimal mit jeweils 15 mL Ether, trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte den Rückstand an 36 g Kieselgel (E/P = 1:3).

Man erhielt 124 mg (33%) **338bAB** als Epimerengemisch (10:11, ¹H-NMR-spektroskopisch bestimmt).

300-MHz-¹H-NMR (CDCl₃) : δ = 0.6-1.6 (m, 9-H₃, 9'-H₃, 10-H₃, 3-H₂, 5-H₂, 6-H₂, 7-H), 1.857, 1.865 (je s, 15-H₃), 2.011, 2.282 (qqd, 8-H), 3.7-4.05 (m, 16-H₂), 4.669, 4.703 (je ddt, 18-H), 4.816, 4.836 (je td, 2-H), 4.846, 4.879 (je ddt, 18'-H), 5.518, 5.527 (je ddt,

17-H), 6.77 (m, 13-H₂), 7.69 (wie dt, 12-H₂). $J_{2,3} = 10.6$ Hz, $J_{2,7} = 4.3$ Hz, $J_{7,8} = 2.7$ Hz, $J_{8,9} = 6.9$ Hz, $J_{16,17} = 7.4$ Hz, $J_{16,18} = 0.8$ Hz, $J_{16,18'} = 1.3$ Hz, $J_{17,18} = 17.1$ Hz, $J_{17,18'} = 10.1$ Hz, $J_{18,18'} = 1.3$ Hz.

C₂₁H₃₁NO₃S (377.55)

Ber. C 66.81 H 8.28 Gef. C 66.84 H 8.34.

-262-

S 11 Umsetzung von 336cAB mit Kaliumfluorid: (1*R**,4*S*)-4-Isopropyl-1-(*p*-tolyl)-1,2,5-thiaoxazolidin-*S*-oxid (372 und 375)

2.32 g (40.0 mmol) Kaliumfluorid und 50 mg (0.19 mmol) 18-Krone-6 wurden in 40 mL Acetonitril suspendiert und mit 6.61 g (19.0 mmol, 75 : 25 Gemisch der Epimeren) **336cAB**, gelöst in 10 mL Acetonitril, 24 h bei Raumtemp. gerührt. Anschließend entfernte man das Solvens i. Vak., extrahierte den Rückstand zweimal mit jeweils 30 mL siedendem Ether, filtrierte und erhielt 4.5 g (quant.) **372** und **375** als hellgelbes Öl, aus welchem man durch Kristallisation aus E/P 2.66 g (59%) **372** als diastereomerenreinen, weißen Festkörper vom Schmp. 80 °C erhielt.

 $R_F = 0.36 \ (E/P = 1:1)$

 $[\alpha]^{20}_{D} = -84.4 \ (c = 1.01, CH_2Cl_2).$

IR (KBr) : 1260, 1130 cm-1 (N=S=O).

300-MHz-¹H-NMR (CDCl₃) : $\delta = 0.945$ (d, 7-H₃), 1.170 (d, 7'-H₃), 1.792 (dqq, 6-H), 2.483 (t, 12-H₃), 3.829 (dd, 3-H), 4.016 (ddd, 4-H), 4.664 (dd, 3'-H), 7.35 (m, 10-H₂), 7.86 (wie dt, 9-H₂). $J_{3,3'} = 7.6$ Hz, $J_{3,4} = 9.0$ Hz, $J_{3,4} = 5.9$ Hz, $J_{4,6} = 8.2$ Hz, $J_{6,7} = 6.7$ Hz, $J_{10,12} = 0.8$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 18.47 (C-7), 20.29 (C-7'), 21.52 (C-12), 34.09 (C-6), 70.92 (C-4), 75.39 (C-3), 128.99 (C-9), 129.61 (C-10), 135.18 (C-8), 144.7 (C-11).

MS (CI, Isobutan) : $m/e = 240 (100\%, [M+1]^+)$.

MS (FAB, 3-Nitrobenzylalkohol) : $m/e = 479 (3.8\%, [2M+1]^+), 240 (100\%, [M+1]^+).$

C₁₂H₁₇NOS (239.34)

Ber. C 60.22 H 7.16 Gef. C 60.20 H 7.25.

375:

 $R_F = 0.43 \ (E/P = 1:1)$

60-MHz-¹H-NMR (CDCl₃) : δ = 0.96 (d, 7-H₃), 1.11 (d, 7'-H₃). $J_{6,7} = 7$ Hz

-263-

Asym. d³-Synthone

-264-

T Umsetzungen der Allylsulfoximide 327, 338aA und 338aB, sowie des Sulfonimidamides 348 mit Carbonylelektrophilen

T 1 Umsetzung von 327 mit 2-Methylpropanal: (*R*₅,1*RS*)-*S-tert*-Butyl-*S*-[4-methyl-2-(1-hydroxy-2-methylpropyl)-phenyl]-*N*-(2-propenyl)sulfoximid (329AB)

Zu einer auf -78 °C gekühlten Lsg. von 303 mg (l.21 mmol) **327** und 154 mg (l.33 mmol) TMEDA in 2 mL THF tropfte man 0.66 mL (1.33 mmol) einer 2.01 M Lsg. von *n*-BuLi in Hexan. Man rührte 30 min bei dieser Temp. und injizierte dann 96 mg (l.33 mmol) 2-Methylpropanal. Nach 5.5 h unterbrach man die Reaktion durch Injektion von 700 mg 50% Essigsäure, goß die Reaktionsmischung auf 10 mL Ether und 10 mL ges. Kochsalzlsg., extrahierte zweimal mit jeweils 10 mL Ether, entsäuerte mit ges. Natriumhydrogencarbonatlsg. (10 mL), trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte an 36 g Kieselgel (erst E/P = 1:4, dann E/P = 1:1).

Man erhielt 130 mg (40%) **329AB** als farbloses Öl (92 : 8; 92% ds).

 $R_F = 0.66 (E/P = 1:1), 0.22 (E/P = 1:1).$

 $[\alpha]_{D}^{20} = -91.9 (c = 1.49, MeOH).$

IR (Film) : 3450 (OH), 1595 (C=C), 1205, 1110 (N=S=O).

 $\begin{array}{l} 300\text{-MHz-}^{1}\text{H-NMR} \ (\text{CDCl}_3): \delta = 0.840 \ (d, \ 15\text{-H}_3), \ 1.035 \ (d, \ 15^{1}\text{-H}_3), \ 1.361 \ (s, \ 2\text{-H}_9), \ 1.989 \\ (qqd, \ 14\text{-H}), \ 2.2 \ (br., \ OH), \ 2.419 \ ("s", \ 12\text{-H}_3), \ 3.480 \ (ddt, \ 3\text{-H}), \ 3.640 \ (ddt, \ 3^{1}\text{-H}), \ 5.042 \ (ddt, \ 5^{1}\text{-H}), \ 5.312 \ (ddt, \ 5\text{-H}), \ 5.542 \ (ddd, \ 13\text{-H}^{*}), \ 5.964 \ (dddd, \ 4\text{-H}), \ 7.15] \ (ddd, \ 10\text{-H}), \ 7.575 \ (dd, \ 8\text{-H}), \ 7.606 \ (d, \ 11\text{-H}). \end{array}$

* nach D₂O-Austausch

 $J_{3,3'} = 15.9 \text{ Hz}, J_{3,4} = 5.2 \text{ Hz}, J_{3',4} = 4.8 \text{ Hz}, J_{3,5} = J_{3',5} = J_{5,5'} = 1.7 \text{ Hz}, J_{4,5} = 17.0 \text{ Hz}, J_{4,5'} = 10.1 \text{ Hz}, J_{7,9} = 2.0 \text{ Hz}, J_{8,12} \approx 0.5 \text{ Hz}, J_{10,11} = 8.1 \text{ Hz}, J_{10,13} = 0.8 \text{ Hz}, J_{13,14} = 6.9 \text{ Hz}, J_{14,15} = 6.9 \text{ Hz}.$

75-MHz-¹³C-NMR (CDCl₃) : δ = 17.80 (C-15), 19.70 (C-15'), 21.50 (C-12), 36.3 (C-14), 24.00 (C-2), 45.92 (C-3), 61.3 (C-1), 74.17 (C-13), 113.58 (C-5), 127.25 (C-10), 129.23 (C-6), 129.50 (C-8), 132.81 (C-12), 138.45 (C-4), 143.26 (C-9), 148.27 (C-7).

MS (CI, Isobutan) : m/e = 324 (21.9%, [M+1]⁺).

C₁₈H₂₉NO₂S (323.50)

Ber. C 66.83 H 9.04 Gef. C 66.72 H 9.11.

T 2 Umsetzung von 348 mit 2,2-Dimethylpropanal: {*R**_{*S*},*N*(1*S*),*S*[2(1*RS*)]}-*S*-[2-(1-hydroxy-2,2-dimethylpropyl)-4-methyl phenyl]-*N*-[1-(methoxymethyl)-2-methylpropyl]-N'-methyl-N'-(2-propenyl)sulfonimidamid (350)

In eine auf -78 °C gekühlte Lsg. von 199 mg (0.61 mmol) **348** und 78 mg (0.67 mmol) TMEDA in 2 mL n-Hexan tropfte man 0.38 mL (0.67 mmol) einer 1.76 M Lsg. von *n*-BuLi in Hexan. Man rührte 1 h nach und injizierte dann 79 mg (0.92 mmol) 2,2-Dimethylpropanal, worauf sich die zuvor gelbe Lsg. augenblicklich unter exothermer Reaktion entfärbte. Nach 90 min goß man die Reaktionsmischung auf 10 mL 2N Salzsäure und 10 mL Ether, extrahierte zweimal mit jeweils 10 mL Ether, entsäuerte mit ges. Natriumhydrogencarbonatlsg. (10 mL), trocknete über Magnesiumsulfat, entfernte das Solvens i. Vak. und chromatographierte an 36 g Kieselgel (E/P = 1:3).

Neben 11 mg (5.5%) Ausgangsmaterial und 106 mg eines Substanzgemisches (RF =

einheitliches Diastereomer.

300-MHz-¹H-NMR (CDCl₃) : δ = 0.920 (d, 7-H₃), 0.928 (d, 7'-H₃), 1.060 (s, 17-H₉), 1.963 (qqd, 6-H), 2.391 ("s", 14-H₃), 2.643 (s, NCH₃), 3.333 (s, OCH₃), 3.4-3.6 (m, 4-H, 5-H₂, 1'-H, OH), 3.794 (ddt, 1-H), 5.142 (ddt, 3-H), 5.145 (ddt, 3'-H), 5.5 (d, br., 15-H), 5.710 (ddt, 2-H), 7.143 (ddd, 12-H), 7.544 (dd, 10-H), 7.930 (d, 13-H).

 $J_{1,1'} = 14.5$ Hz, $J_{1,2} = 6.4$ Hz, $J_{1,3} = J_{1',3} = 1.5$ Hz, $J_{2,3} = 9.8$ Hz, $J_{2,3'} = 17.4$ Hz, $J_{3,3'} = 1.5$ Hz, $J_{4,6} = 4.1$ Hz, $J_{6,7} = 6.9$ Hz, $J_{10,12} = 1.9$ Hz, $J_{10,15} = 0.6$ Hz, $J_{12,13} = 8.2$ Hz, $J_{12,15} = 0.7$ Hz, $J_{15,OH} = 4.3$ Hz.

T 3 Umsetzungen von 338aA und 338aB mit 2,2-Dimethylpropanal: $[(R_s^*, 1E, N(1S), 4RS)]$ -N-(1-Methylbenzyl)-5,5-dimethyl-1-(*p*-toluolsulfonimidoyl)-1-hexen-4-ol (368AB), [(R_s^*, 1Z, N(1S), 4R^*)]-N-(1-Methylbenzyl)-5,5-dimethyl-1-(*p*-toluolsulfonimidoyl)-1-hexen-4-ol (370) und [R_s^*, 1E, 3E, N(1S)]-N-(1-Methylbenzyl)-S-5,5-dimethyl-1,3-hexadienyl-S-(*p*-tolyl)sulfoximid (369)

41 mg (0.14 mmol) **338aB** ($R_F = 0.26$) wurden in 2 mL THF 15 min bei -78 °C mit 86 µL (0.15 mmol) einer 1.76 M Lsg. von *n*-BuLi in Hexan metalliert. Anschließend injizierte man 121 mg (0.15 mmol) einer 1.24 molalen Lsg. von CITiN in Hexan, rührte

30 min bei -78 °C nach und injizierte dann bei -78 °C 30 mg (0.35 mmol) 2,2-Dimethylpropanal. Nach 2 h goß man die Reaktionsmischung auf 5 mL 2N Salzsäure und 5 mL Ether, extrahierte zweimal mit jeweils 5 mL Ether, entsäuerte mit 5 mL ges. Natriumhydrogencarbonatlsg., trocknete über Magnesiumsulfat und chromatographierte den Rückstand nach Entfernung des Solvens i. Vak. an 20 g Kieselgel (E/P = 1:2). Man erhielt 7.7 mg (14%) **369** und 14.6 mg (25%) **368AB** (als 1:1 Epimerengemisch; ¹H-NMRspektroskopisch bestimmt) jeweils als farbloses Öl.

368:

 $R_F = 0.17 (E/P = 1:1)$

Gemisch der C-4 Epimeren (1:1).

300-MHz-¹H-NMR (CDCl₃, nach D₂O-Austausch) : $\delta = 0.850$, 0.852 (je s, 6-H₉), 1.462, 1.472 (je d, 8-H₃), 1.65, 1.78 (je br., OH*), 2.08, 2.32 (je dddd, 3-H und 3'-H), 2.43 ("s", 13-H₃), 3.180, 3.206 (je dd, 4-H), 4.409 (q, 7-H), 6.255, 6.274 (je dt, 1-H), 6.805, 6.829 (je ddd, 2-H), 7.1-7.5 (m, Aryl-H), 7.85 (wie dt, 10-H₂).

* vor D₂O-Austausch.

 $R_F = 0.48 \ (E/P = 1:1).$

300-MHz-¹H-NMR (CDCl₃) : δ = 1.009 (s, 6-H₉), 1.491 (d, 8-H₃), 2.418 ("s", 13-H₃),

-266-

-268-

-269-

Asym. d^3 -Synthone

4.445 (q, 7-H), 5.913 (ddd, 3-H), 6.054 (dt, 4-H), 6.103 (dt, 1-H), 7.039 (dd, 2-H), 7.1-7.5 (m, Aryl-H), 7.85 (wie dt, 10-H₂).

 $J_{1,2} = 14.6$ Hz, $J_{1,3} = 0.5$ Hz, $J_{1,4} = 0.7$ Hz, $J_{2,3} = 10.5$ Hz, $J_{3,4} = 15.4$ Hz.

MS (CI, Methan) : $m/e = 386 (87.7\%, [M+1]^+)$.

C₂₃H₃₁NO₂S (385.57)

Ber. 386.2154 Gef. 386.2154.

MS (CI, Isobutan) : m/e = 368 (75.0%, [M+1]⁺), 352 (100%, [M-CH₃]⁺)

Mit 209 mg (0.7 mmol) des unpolaren Isomeren **338aA** ($\mathbf{R}_{\rm F} = 0.33$, (E/P = 1:1)) und 355 mg (0.77 mmol) einer 2.2 molalen Lsg. von CITiO in Hexan (*Transmetallierung 30 min bei 0 °C*) erhielt man neben 60 mg (30%) Ausgangsmaterial, 101 mg (37%) **370** als einheitliches Diastereomer (97% *ds*, ¹H-NMR-spektroskopisch bestimmt).

 $R_F = 0.11 (E/P = 1:1)$

 $[\alpha]^{20}_{D} = -127.1 \ (c = 1.55, CH_2Cl_2).$

IR (Film) : 3420 (OH), 1625 (C=C), 1230, 1120 cm⁻¹ (N=S=O).

300-MHz⁻¹H-NMR (CDCl₃) : δ = 0.956 (s, 6-H₉), 1.537 (d, 8-H₃), 2.370 (s, 13-H₃), 2.43 (m, 3-H), 3.20-3.32 (m, 3'-H und 4-H), 4.209 (q, 7-H), 6.33 (m, 2-H), 6.48 (wie ddd, 1-H), 7.0-7.25 (m, Aryl-H), 7.53 (wie dt, 10-H₂).

 $J_{7,8} = 6.7$ Hz.

75-MHz-¹³C-NMR (CDCl₃) : δ = 21.46 (C-13), 25.78 (C-6), 28.01 (C-8), 30.90 (C-3), 35.57 (C-5), 54.35 (C-7), 78.40 (C-4), 126.23, 128.02, 143.40 (Phenyl-C), 128.95 (C-10), 129.60 (C-11), 134.42 (C-1), 137.28 (C-9), 142.73 (C-2), 146.55 (C-12).
Literaturverzeichnis

- 1. P.A. Bartlett *Tetrahedron* **1980**, *36*, 3.
- a) D.A. Evans, J.M. Takaes, L.R. McGee, M.D. Ennis, D.J. Mathre, J. Bartroli Pure Appl. Chem. 1981, 53, 1109.
 - b) M.T. Reetz Top. Curr. Chem. 1982, 106, 1.
 - D. Seebach, B. Weidmann in: *Modern Synthetic Methods*, R. Scheffold (Ed.), Salle / Sauerländer Frankfurt 1983.
 - d) M.T. Reetz *Organotitanium Reagents in Organic Synthesis*, Springer Verlag, Berlin, 1986.
- 3. a) C.H. Heathcock in: *Asymmetric Synthesis, Vol. 3 III*, J.D. Morrison (Ed.), Academic Press New York 1984, S.11.
 - b) D.A. Evans, J.V. Nelson, T.R. Taber Top. Stereochem. 1982, 13.
 - c) R.W. Hoffmann Angew. Chem. 1987, 99, 503; Angew. Chem. Int. Ed. Engl. 1987, 26, 489.
- 4. D. Hoppe Angew. Chem. 1984, 96, 930; Angew. Chem. Int. Ed. Engl. 1984, 23, 932.
- 5. R.W. Hoffmann, B. Landmann Angew. Chem. 1984, 96, 427.
- 6. V.J. Jephcote, A.J. Pratt, E.J. Thomas J. Chem. Soc. Chem. Commun. 1984, 800.
- 7. G. Tarara, Dissertation, Universität Göttingen 1988.
- 8. M. Wilckens, Dissertation, Universität Kiel 1987.
- 9. a) T. Krämer, Diplomarbeit, Universität Göttingen 1985.
 - b) T. Krämer, D. Hoppe Angew. Chem. **1986**, 98, 171; Angew. Chem. Int. Ed. Engl. **1986**, 25, 160.
 - c) T. Krämer, D. Hoppe *Tetrahedron Lett.* **1987**, 5149.
 - d) T. Krämer, gepl. Dissertation, Universität Kiel 1989.
- D. Hoppe, O. Zschage Angew. Chem. 1989, 101, 67; Angew. Chem. Int. Ed. Engl. 1989, 28, 69.
- J.D. Morrison in : Asymmetric Synthesis, Vol. 1, J.D. Morrison (Ed.), Academic Press, New York, 1983, S.1.
- 12. a) E.J. Corey, H. König, T.H. Lowry Tetrahedron Lett. 1962, 515.
 - b) E.J. Corey, T.H. Lowry Tetrahedron Lett. 1965, 793.
 - c) E.J. Corey, T.H. Lowry *Tetrahedron Lett.* **1965**, 803.
- 13. D.J. Cram, R.D. Trepka, P.S. Janiak J. Am. Chem. Soc. 1966, 88, 2749 und dort

zit. Lit..

 G. Chassaing, A. Marquet, J. Corset, F. Froment J. Organometal. Chem. 1982, 232, 293.

-271-

- 15. G. Chassaing, A. Marquet Tetrahedron 1978, 34, 1399.
- L.D. McKeever, R. Waack, M.A. Dorau, E.B. Baker J. Am. Chem. Soc. 1969, 91, 1057.
- 17. J.C.J. Bart J. Chem. Soc. B 1969, 350.
- a) H. Schmidbaur, W. Buchner, D. Scheutzow *Chem. Ber.* **1973**, *106*, 1251.
 b) K.A.O. Starzewski, M. Feigel J. Organometal. Chem. **1975**, *93*, C20.
- 19. R. Lett, G. Chassaing, A. Marquet J. Organometal. Chem. 1976, 111, C17.
- 20. R. Lett, G. Chassaing Tetrahedron 1978, 34, 2705.
- M. Marsch, K. Harms, W. Massa, G. Boche Angew. Chem. 1987, 99, 706; Angew. Chem. Int. Ed. Engl. 1987, 26, 696.
 Review: G. Boche Angew. Chem. 1989, 101, issue 3, in press.
- H.J. Gais, J. Vollhardt, H.J. Lindner Angew. Chem. 1986, 98, 916; Angew. Chem. Int. Ed. Engl. 1986, 25, 939.
- 23. a) D.A. Bors, A. Streitwieser, Jr. J. Am. Chem. Soc. 1986, 108, 1397.
 - b) S. Wolfe, A. Stolow, L.A. La John *Tetrahedron Lett.* **1983**, 4071.
 - c) S. Wolfe, L.A. La John, D.F. Weaver Tetrahedron Lett. 1984, 2863.
 - d) F.G. Bordwell, J.C. Branca, C.R. Johnson, N.R. Vanier *J. Org. Chem.* **1980**, *45*, 3884.
- a) P. Bickart, F.W. Carson, J. Jacobus, E.G. Miller, K. Mislow J. Am. Chem. Soc. 1968, 90, 4869.
 - b) D.A. Evans, G.C. Andrews Acc. Chem. Res. 1974, 7, 147.
 - c) R.W. Hoffmann, S. Goldmann, N. Maak, R. Gerlach, F. Frickel, G. Steinbach *Chem. Ber.* **1980**, *113*, 819.
 - d) R.J. Goodridge, T.W. Hambley, R.K. Haynes, D.D. Ridley *J. Org. Chem.* **1988**, *53*, 2881.

e) R. Annunziata, M. Cinquini, F. Cozzi, S. Farina, V. Montanari *Tetrahedron* **1987**, *43*, 1013.

M.R. Binns, R.J. Goodridge, R.K. Haynes, D.D. Ridley *Tetrahedron Lett.* 1985, 6381.

 a) D.H. Hua, S. Venkataraman, M. Jo Coulter, G. Sinai-Zingde J. Org. Chem. 1987, 52, 719.

b) D.H. Hua, S. Venkataraman, R.A. Ostrander, G. Sinai-Zingde, P.J. McCann,

-272-

- M. Jo Coulter, Min Ren Xu J. Org. Chem. 1988, 53, 507.
- c) D.H. Hua, M. Jo Coulter, I. Badejo Tetrahedron Lett. 1987, 5465.
- 26. a) G. Solladié Synthesis 1981, 185.
 - b) G. Solladié, J. Hutt, A. Girardin Synthesis 1987, 173.
 - c) J. M. Klunder, K. B. Sharpless J. Org. Chem. 1987, 52, 2598.
 - d) K. K. Andersen Tetrahedron Lett. 1962, 93.
- 27. E.v. Hülsen, *Dissertation*, Universität Göttingen 1985.
- 28. Uhlenbroek, Koopmans Rec. Trav. Chim. Pays-Bas 1957, 76, 657.
- C. Pretsch, T. Clerc, J. Seibl, W. Simon Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden, Springer-Verlag, Berlin, Heidelberg, New York 1986.
- 30. W. Davies, J.H. Dick J. Chem. Soc. 1931, 2104.
- 31. P. Tebben, *Diplomarbeit*, Universität Kiel 1988.
- 32. Den Verbindungsnummern N nachgestellte Buchstaben A und B (NA, NB bzw. NA/B) kennzeichnen ein, bzw. beide enantiomerenreine Diastereomere unbekannter Relativkonfiguration. Dabei stellt die mit A bezeichnete Verbindung das unpolarere, die mit B bezeichnete das polarere Diastereomer dar.

In den Formelschemata weisen durchgezogene Bindungen (_______) auf ein einheitliches Diastereomer mit unbekannter relativer Konfiguration hin (NA, NB, NA/B), während "geschlängelte" Bindungen (^///) zur Kennzeichnung von Diastereomerengemischen (NAB) dienen.

- 33. C. Dijkgraaf, J.P.G. Rousseau Spektrochim. Acta Part A 1968, 24, 1213.
- A. Brönnecke, Dissertation, Universität Göttingen 1983.
- a) C. Gonschorrek, *Dissertation*, Universität Göttingen 1985.
 b) S.K. Massad, L.D. Hawkins, D.C. Baker *J. Org. Chem.* 1983, 48, 5180.
- 36. D. Hoppe, G. Tarara, M. Wilckens Synthesis 1989, 83.
- R.W. Hoffmann, J. Lanz, R. Metternich, G. Tarara, D. Hoppe Angew. Chem. 1987, 99, 1196; Angew. Chem. Int. Ed. Engl. 1987, 26, 1145.
- 38. ¹H-NMR-spektroskopisch und durch Auswaage bestimmt.
- S. Masamune, W.Choy, J.S. Petersen, L.R. Sita Angew. Chem. 1985, 97, 1; Angew. Chem. Int. Ed. Engl. 1985, 24, 1.
- 40. H. Friebolin, S. Kabuss, W. Maier, A. Lüttringshaus Tetrahedron Lett. 1962, 683.
- 41. G. Cardillo, M. Orena, G. Porti, S. Sandri J. Chem. Soc., Chem. Commun. 1981, 465.
- 42. T. Nakata, M. Fukui, T. Oishi Tetrahedron Lett. 1988, 2219.

- -273-
- 43. M. Karplus J. Am. Chem. Soc. 1975, 97, 2645.
- 44. Y. Robin, A. Godard, G. Quequiner J. Heterocyclic Chem. 1987, 24, 1487.
- D. Hoppe, J. Lüßmann, P.G. Jones, D. Schmidt, G.M. Sheldrick *Tetrahedron Lett.* 1986, 3591.
- 46. a) D. Seebach Synthesis 1969, 17.
 - b) D. Seebach, B.-T. Gröbel Synthesis 1977, 357.
 - c) D. Seebach Angew. Chem. 1979, 91, 259; Angew. Chem. Int. Ed. Engl. 1979, 18, 239.
- 47. a) H. Stetter Angew. Chem. 1976, 88, 695; Angew. Chem. Int. Ed. Engl. 1976, 15, 639.
 - b) H. Stetter, H. Kuhlmann Chem. Ber. 1976, 109, 2890.
 - c) H. Steuer, G. Hilboll, H. Kuhlmann Chem. Ber. 1979, 112, 84.
- 48. S. Hünig, M. Öller Chem. Ber. 1981, 114, 959.
- 49. a) R.M. Jacobson, G.P. Lahm J. Org. Chem. 1979, 44, 462.
 - b) R.M. Jacobson, G.P. Lahm, J.W. Clader J. Org. Chem. 1980, 45, 395.
 - c) R.M. Jacobson, J.W. Clader Tetrahedron Lett. 1980, 1205.
- 50. a) J.-M. Fang, B.-C. Hong, L.-F. Liao J. Org. Chem. 1987, 52, 855.
 - b) J.-M. Fang, L.-F. Liao, B.-C. Hong J. Org. Chem. 1986, 51, 2828.
 - c) J.-M. Fang, B.-C. Hong J. Org. Chem. 1987, 52, 3162.
- 51. P. Tebben, gepl. Dissertation.
- 52. M.T. Reetz Top. Curr. Chem. 1982, 106, 1.
- 53. U. Dämmgen, H. Bürger Z. anorg. allg. Chemie 1977, 429, 173.
- 54. M. Reggelin, Diplomarbeit, Göttingen 1985.
- 55. a) H. Bürger, K. Wiegel J. Organometal. Chem. 1977, 124, 279.
 - b) H. Bürger, K. Wiegel Z. anorg. allg. Chemie 1976, 419, 157.
 - c) H. Bürger, W.D. Beiersdorf Z. anorg. allg. Chemie 1979, 459, 111.
 - d) W.D. Beiersdorf, D.J. Brauer, H. Bürger Z. anorg. allg. Chemie 1981, 475, 56.
- a) C. R. Johnson in : Asymmetric Synthesis, Vol. 4, J.D. Morrison (Ed.), Academic Press, New York, 1983.

b) A. Nudelman in *The Chemistry of Optically Active Sulfur Compounds*, Gordon and Breach Science Publishers 1984.

- 57. E.J. Corey Pure Appl. Chem. 1967, 14, 19.
- 58. C.R. Johnson, R.A. Kirchhoff, H. Glenn Corkins J. Org. Chem. 1974, 39, 2458.
- C.R. Johnson, K.G. Bis, J.H. Cantillo, N.A.Meanwell, M.F.D. Reinhard, J.R. Zeller, G.P. Vouk J. Org. Chem. 1983, 48, 1.

- 60. M. Cinquini, S. Colonna Int. J. Sulfur Chem. 1976, 8, 603.
- M. Cinquini, S. Colonna, R. Fornasier, F. Montanart J. Chem. Soc. Perkin I 1972, 1886.
- K.K. Andersen, W. Gaffield, N.E. Papanikolaov, J.W. Foley, R.I. Perkins J. Am. Chem. Soc. 1964, 86, 5637.
- 63. J. Drabowicz, B. Bujnicki, M. Mikolajczyk J. Org. Chem. 1982, 47, 3325.
- a) M. Mikolajczyk, J. Drabowicz, B. Bujnicki J. Chem. Soc., Chem. Commun. 1976, 568.
 - b) K. Hiroi, R. Kitayama, S. Sato Synthesis 1983, 1040.
- 65. a) H. Kwart, A.A. Kahn J. Am. Chem. Soc. 1967, 89, 1950.
 - b) C.R. Johnson, C.W. Schroeck J. Am. Chem. Soc. 1973, 95, 7418.
 - c) D.J. Cram, J. Day, D.R. Rayner, Don M. von Schriltz, D.J. Duchamp, D.C. Garwood *J. Am. Chem. Soc.* **1970**, *92*, 7369.
- 66. a) Y. Tamura, J. Minamikawa, M. Ikeda *Synthesis* **1977**, 1.
 - b) Y. Tamura, J. Minamikawa, K. Sumoto, S. Fuji, M. Ikeda *J. Org. Chem.* **1973**, *38*, 1239.
 - c) R. Y. Ning Chem. Eng. News 1973, 51, 36.
- 67. Y. Tamura, K. Sumoto, J. Minamikawa, M. Ikeda Tetrahedron Lett. 1972, 4137.
- K. Mislow, M.M. Green, P. Laur, J.T. Melillo, T. Simmons, A.L. Ternay J. Am. Chem. Soc. 1965, 87, 1958.
- T.R. Williams, A. Nudelman, R.E. Booms, D.J. Cram J. Am. Chem. Soc. 1972, 94, 4684.
- 70. H. Günther NMR-Spektroskopie G. Thieme Verlag Stuttgart, New York 1983.
- 71. a) C.A. Kingsbury, D.J. Cram J. Am. Chem. Soc. 1960, 82, 1810.
 - b) J.L. Kice, J.D. Campbell J. Org. Chem. 1967, 32, 1631.
 - c) P.G. Sammes Chem. Rev. 1976, 76, 113.
- G, Koga, N. Koga, J.-P. Anselme in: *The chemistry of the hydrazo, azo and azoxy groups Part 2*, S. Patai (Ed.), J. Wiley 1975.
- W. W. Simons *The Sadtler Handbook of Proton NMR Spectra*, Sadtler Research Laboratories Inc., Philadelphia, Pennsylvania 19104, USA.
- 74. S. Colonna, C.J.M. Stirling J. Chem. Soc. Perkin I 1971, 1591.
- D.J. Cram, J. Day, D.R. Rayner, Don M. von Schriltz, D.J. Duchamp, D.C. Garwood J. Am. Chem. Soc. 1970, 92, 7369.
- 76. S. Colonna, C.J.M. Stirling J. Chem. Soc. Perkin I 1974, 2120.
- 77. a) S. Castellano, A.A. Bothner-By J. Chem. Phys. 1964, 41, 3863.

- b) S.M. Castellano *laocn 3 in: Computer Programs for Chemistry Vol. 1*, D.F. DeTar (Ed.), Benjamin Press, New York 1968.
- c) Dr. R.W. Counts Quantum Chemistry Program Exchange (QCPE) Department of Chemistry, Indiana University, Bloomington, Indiana 47405 USA.
- 78. D.J. Cram, J.S. Bradshaw J. Am. Chem. Soc. 1963, 85, 1108.
- 79. G.D. Daves, R.K. Robins, C.C. Cheng J. Am. Chem. Soc. 1962, 84, 1724.
- 80. D.N. Kursauov, Z.N. Parties, N.M. Loim Synthesis 1974, 633.
- 81. E.J. Corey, J.W. Suggs J. Org. Chem. 1973, 38, 3224.
- 82. B. Moreau, S. Lavielle, A. Marquet Tetrahedron Lett. 1977, 2591.
- 83. C.R. Johnson, A. Wambsgans J. Org. Chem. 1979, 44, 2278.
- 84. M.R. Jones, D.J. Cram J. Am. Chem. Soc. 1974, 96, 2183.
- W.S. Knowles, M.J. Sabacky, B.D. Vineyard, D.J. Weinkauff J. Am. Chem. Soc. 1975, 97, 2567.
 - b) W.S. Knowles, M.J. Sabacky, B.D. Vineyard Adv. Chem. Ser. 1974, 132, 274.
- C.A. Maryanoff, B.E. Maryanoff, R. Tang, K. Mislow J. Am. Chem. Soc. 1973, 95, 5839.
- a) G.M, Whitesides, J. San Filippo, C.P. Casey, E.J. Panck *J. Am. Chem. Soc.* 1967, 89, 5302.

b) T. Kauffmann, D. Kühlmann, W. Sahn, H. Schrecken *Angew. Chem.* **1968**, *80*, 566; *Angew. Chem. Int. Ed. Engl.* **1968**, *7*, 541.

- 88. T.W. Greene Protectiv Groups in organic Synthesis, Wiley-Interscience, 1981.
- 89. J.-B. Baudin, M. Julia, C. Rolando, J.-N. Verpeaux Bull. Soc. Chim. Fr. 1987, 493.
- B.F. Lundt, N.L. Johansen, A. Volund, J.Markussen Int. J. Pept. Protein Res. 1978, 12, 258.
- T. Tsuji, T. Kataoka, M. Yoshioka, Y. Sendo, Y. Nishitani, S. Hirai, T. Maeda, W. Nagata *Tetrahedron Lett.* **1979**, 2793.
- a) H.W. Roesky, M. Zimmer, M. Noltemeyer, G.M. Sheldrick *Chem. Ber.* 1988, 121, 1377.

b) H.W. Roesky, M. Scholz, F. Edelman, M. Noltemeyer, G.M. Sheldrick *Chem. Ber.* **1987**, *120*, 1881.

- 93. H. Schmidbaur, G. Kammel Chem. Ber. 1969, 102, 4128.
- 4. a) L. Birkhofer, A. Ritter, P. Richter Chem. Ber. 1963, 96, 2750.
 - b) H.-G. Horn, R. Köntges, F. Kolkmann Z. Naturf. 1978, 33B, 1422.
- 95. Ki-Jun Hwang J. Org. Chem. 1986, 51, 99.

- 96. D.T. Hurst, A.G. McInnes Can. J. Chem. 1965, 43, 2004.
- a) D. Seebach, A.K. Beck, R. Imwinkelried, S. Roggo, A. Wonnacott Helv. Chim. Acta 1987, 70, 954.
 - b) K. Narasaka, M. Inove, T. Yamada Chem. Lett. 1986, 1967.
- 98. a) E. Benzing, W. Kornicker *Chem. Ber.* 1961, *94*, 2262.
 b) M.T. Reetz, R. Urz, T. Schuster *Synthesis* 1983, 1879.
- 99. M. Fiorini, F. Mercati, G.M. Giongo J. Mol. Catalysis 1978, 4, 125.
- S.F. Pedersen, J.C. Dewan, R.R. Eckman, K.B. Sharpless J. Am. Chem. Soc. 1987, 109, 1279.
- 101. M.T. Reetz, S.-M. Kyung, J. Westermann Organometallics 1984, 3, 1716.
- 102. A. Dormond, Kolavudh Tep, J. Tirouflet J. Organometal. Chem. 1978,
- 103. M.T.Reetz, T. Kükenhöhner, P. Weinig Tetrahedron Lett. 1986, 5711.
- 104. a) M. Riediker, R.O. Duthaler *Angew. Chem.* 1989 in press.
 b) R.O. Duthaler, P. Herold, W. Lottenbach, K. Oertle, M. Riediker *Angew.* Chem. 1989 in press.
 - c) G. Bold, R.O. Duthaler, M. Riediker Angew. Chem. 1989 in press.
 - d) M. Riediker, A. Hafner, U. Piantini, G. Rihs, A. Togni *Angew. Chem.* **1989** in press.
- H.W. Roesky, B. Melker, M. Noltemeyer, H.-G. Schmidt, U. Scholz, G.M. Sheldrick *Chem. Ber.* 1988, *121*, 1403.
- 106. B. Meller, gepl. Dissertation Universität Göttingen.
- 107. H. W. Roesky, T. Tojo, M. Jlemann, D. Westhoff Z. Naturforsch. 1987, 42b, 877.
- 108. F. Schrumpf, gepl. Dissertation Universität Göttingen.
- 109. U. Scholz, Dissertation Universität Göttingen 1989.
- D. Hoppe, F. Lichtenberg Angew. Chem. 1982, 94, 378; Angew. Chem. Int. Ed. Engl. 1982, 21, 372.
- 111. P.A. Grieco, T. Oguri, Y. Yokoyama Tetrahedron Lett. 1978, 419.
- 112. J.A. Marshall, B.S. Dettoff *Tetrahedron* **1987**, *43*, 4849.
- J.L. Herrmann, G.H. G.R. Kieczykowskie, R.F. Schlessinger *Tetrahedron Lett.* 1973, 4715.
- 114. S. Raucher, G.H. Koolpe J. Org. Chem. 1978, 43, 3794.
- a) M. Hirama, H. Hioki, S. Hô, C. Kabuto *Tetrahedron Lett.* 1988, 3121.
 b) M. Hirama, H. Hioki, S. Hô, *Tetrahedron Lett.* 1988, 3125.
- 116. A.T. Balaban Rev. Roum. Chim. 1971, 16, 725.
- 117. R.W. Baldock, P. Hudson, A.R. Katritzky, F.J. Soti J. Chem. Soc. Perkin I 1974,

1422.

- 118. Review: H.G. Viehe, Z. Janousek, R. Merényi Acc. Chem. Res. 1985, 18, 148.
- 119. G. Stork, M. Kahn J. Am. Chem. Soc. 1985, 107, 500.
- 120. K. Tamao, N. Ishida, M. Kumada J. Org. Chem. 1983, 48, 2120.
- 121. B. Zwanenburg, J. terWiel Tetrahedron Lett. 1970, 935.
- 122. R. Curci, F. DiFuria Tetrahedron Lett. 1974, 4085.
- a) K.B. Sharpless, T.R. Verhoeven *Aldrich Chim. Acta* 1979, *12*, 63.
 b) E.D. Mihelich, K. Daniels, D.J. Eckhoff *J. Am. Chem. Soc.* 1981, *103*, 7690.
- 124. J. Bremner, M. Julia, M. Lannay, J.-P. Stacino Tetrahedron Lett. 1982, 3265.
- 125. J.-L. Fabre, M. Julia, J.-N. Verpeaux Tetrahedron Lett. 1982, 2469.
- 126. V. VanRheenen, R.C. Kelly, D.Y. Cha Tetrahedron Lett. 1976, 1973.
- 127. H.R. Bently, J.K. Whitehead J. Chem. Soc. 1950, 2081.
- 128. E.S. Levchenko, A.A. Kisilenko, D.V. Kirsarov Zh. Obshch. Khim. 1963, 33, 3065.
- 129. Review: C.R. Johnson Acc. Chem. Res. 1973, 6, 341.
- 130. C.R. Johnson, C.W. Schroeck J. Am. Chem. Soc. 1973, 95, 7418.
- a) C.W. Schroek, C.R. Johnson J. Am. Chem. Soc. 1971, 93, 5305.
 b) C.R. Johnson, C.J. Stark J. Org. Chem. 1982, 47, 1193.
- 132. C.R. Johnson, C.J. Stark Tetrahedron Lett. 1979, 4713.
- 133. R. Annunziata, M. Cinquini, F. Cozzi J. Chem. Soc. Perkin I 1981, 1109.
- 134. C.R. Johnson, C.J. Stark J. Org. Chem. 1982, 47, 1196.
- a) C.R. Johnson, J.R. Zeller J. Am. Chem. Soc. 1982, 104, 4021.
 b) C.R. Johnson, J.R. Zeller Tetrahedron 1984, 40, 1225.
- 136. C.R. Johnson, N.A. Meanwell J. Am. Chem. Soc. 1981, 103, 7667.
- 137. a) K. Okuma, T. Koike, H. Ohta J. Org. Chem. 1988, 53, 4190.
 - b) H. Takei, I. Watanabe, T. Mukaiyama Bull. Chem. Soc. Jpn. 1965, 38, 1989.
 - c) E.U. Johnson, C.C. Bacon, C.R. Johnson, J. Am. Chem. Soc. 1971, 93, 5306.
 - d) R.E. Booms, D.J. Cram J. Am. Chem. Soc. 1972, 94, 5438.
 - e) C.R. Johnson, E.U. Johnson, C.C. Bacon J. Org. Chem. 1979, 44, 2055.
- a) M. Iwao, T. Iihama, K.K. Mahalanabis, H. Perrier, V. Snieckus J. Org. Chem. 1989, 54, 26.
 - b) P. Beak, V. Snieckus Acc. Chem. Res. 1982, 15, 305.
 - c) V. Snieckus Bull. Soc. Chim. Fr. 1988, 67.
- 139. a) C.W. Schroek, C.R. Johnson J. Am. Chem. Soc. 1971, 93, 5308.
- 140. a) D. Barnard, L. Bateman, M. E. Cain, T. Colclough, J.I. Couneen J. Chem. Soc.

1961, 5339.

- b) S. Takei, H. Asakawa, H. Hirano CA 1972, 77, 87861.
- c) H. Asakawa, K. Amiya, S. Takei Takeda Kenkyushoho 1970, 29, 610.
- d) Kametani J. Pharm. Chem. 1959, 31, 60.
- 141. H. Rheinboldt, F. Mott, E. Motzkus J. prakt. Chem. 1932, 134, 257.
- 142. E. Krauthausen in Eugen Müller (Hrsg.), Houben-Weyl, Methoden der Organischen Chemie, Band E 11, S. 635, G. Thieme, Stuttgart 1985.
- 143. a) W. J. Jones, W. C. Davies, S. T. Bowden, C. Edwards, V. E. Davis, L. H. Thomas J. Chem. Soc. 1947, 1446.

b) U. Schöllkopf in Eugen Müller (Hrsg.), *Houben-Weyl, Methoden der Organischen Chemie, Band XIII/1*, G. Thieme, Stuttgart 1970.
c) G. Bähr, S. Pawlenko in Eugen Müller (Hrsg.), *Houben-Weyl, Methoden der*

- Organischen Chemie, Band XIII/6, G. Thieme, Stuttgart 1978.
- 144. a) H. Hagemann in Eugen Müller (Hrsg.), *Houben-Weyl, Methoden der Organischen Chemie, Band E 4*, G. Thieme, Stuttgart 1983.
 b) B. Holmberg, W. Rosen *Ber. Dtsch. Chem. Ges.* 1925, *58*, 1834.
- T. L. Davis, S.C. Lane in H. Gilman, A.H. Blatt (Ed.), Organic Synthesis Coll. Vol I, Organic Synthesis, Inc., 2nd Ed., 1967.
- 146. a) M. J. Mintz, C. Walling in H. E. Baumgarten (Ed.), *Organic Synthesis Coll. Vol. V*, Organic Synthesis, Inc., 1973, S. 183.
 b) H.M. Teeter, E.W. Bell in H. E. Baumgarten (Ed.), *Organic Synthesis Coll. Vol. IV*, Organic Synthesis, Inc., 2nd Ed., 1967.
- 147. W. Reppe Liebigs Ann. Chem. 1955, 596, 190.
- 148. E. Krauthausen in Eugen Müller (Hrsg.), *Houben-Weyl, Methoden der Organischen Chemie, Band E 11*, S. 656, G. Thieme, Stuttgart 1985.
- 149. a) F. Wudl, T.B.K. Lee J. Chem. Soc. Chem. Commun. 1972, 61.
 b) F. Wudl, T.B.K. Lee J. Am. Chem. Soc. 1973, 95, 6349.

Lebenslauf

Am 1.6.1960 wurde ich als Sohn des Arztes Dr. med. Siegfried Reggelin und seiner Frau Brigitte, geb. Hacker in Elbingerode/Harz geboren.

Nachdem meine Eltern im August 1960 die DDR verlassen hatten, wohnten wir zunächst in Ingolstadt um dann nach Montabaur und schließlich in die Kleinstadt Hadamar zu ziehen. Dort verbrachte ich den größten Teil meiner Kindheit sowie die gesamte Schulzeit, die mit meiner Einschulung in die Grundschule Hadamar im Winter 1966 begann. Im August 1970 wechselte ich zum gymnasialen Zweig der Fürst-Johann-Ludwig-Gesamtschule in Hadamar, die ich mit der Reifeprüfung am 23.6.1979 erfolgreich abschloß.

Nach 15-monatigem Grundwehrdienst von Oktober 1979 bis Dezember 1980 nahm ich im April 1981 das Studium der Chemie an der Justus-Liebig-Universität in Gießen auf, um es nach zwei Semestern im Sommer 1982 an der Georg-August-Universität zu Göttingen fortzusetzen. Am 16.2.1984 legte ich dort die Diplom-Chemiker-Vorprüfung ab. Von Februar 1985 bis September 1985 fertigte ich unter der Anleitung von Prof. Dr. D. Hoppe meine Diplomarbeit an und bestand am 30.10.1985 die Diplom-Chemiker-Hauptprüfung. Anschließend wechselte ich an die Christian-Albrechts-Universität zu Kiel. Seitdem arbeite ich - wiederum unter der Anleitung von Prof. Dr. D. Hoppe - an meiner Dissertation.

Ich besitze die deutsche Staatsbürgerschaft.